Publication

Caching (a pair of) Gaussians

Résumé

A source produces i.i.d. vector samples from a Gaussian distribution, but the user is interested in only one component. In the cache phase, not knowing which component the user is interested in, a first compressed description is produced. Upon learning the user’s choice, a second message is provided in the update phase so as to attain the desired fidelity on that component. We aim to find the cache strategy that minimizes the average update rate. We show that for Gaussian codebooks, the optimal strategy depends on whether or not the cache is large enough to make the vector conditionally independent. If it is, infinitely many equally optimal strategies exist. If it is not, we show that the encoder should project the source onto some subspace prior to coding. For a pair of Gaussians, we exactly characterize this projection vector.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.