Publication

Batch Mode Reinforcement Learning for Controlling Gene Regulatory Networks and Multi-model Gene Expression Data Enrichment Framework

Utku Sirin
2013
Student project
Abstract

Over the last decade, modeling and controlling gene regulation has received much attention. In this thesis, we have attempted to solve (i) controlling gene regulation systems and (ii) generating high quality artificial gene expression data problems. For controlling gene regulation systems, we have proposed three control solutions based on Batch Mode Reinforcement Learning (Batch RL) techniques. We have proposed one control solution for fully, and two control solutions for partially observable gene regulation systems. For controlling fully observable gene regulation systems, we have proposed a method producing approximate control policies directly from gene expression data without making use of any computational model. Results show that our proposed method is able to produce approximate control policies for gene regulation systems of several thousands of genes just in seconds without loosing significant performance; whereas existing studies get stuck even for several tens of genes. For controlling partially observable gene regulation systems, firstly, we have proposed a novel Batch RL framework for partially observable environments, Batch Mode TD(λ). Its idea is to produce approximate stochastic control policies mapping observations directly to actions probabilistically without estimating actual internal states of the regulation system. Results show that Batch Mode TD(λ) is able to produce successful stochastic policies for regulation systems of several thousands of genes in seconds; whereas existing studies cannot produce control solution for regulation systems of several tens of genes. To our best knowledge, Batch Mode TD(λ) is the first framework for solving non-Markovian decision tasks with limited number of experience tuples. For controlling partially observable gene regulation systems, secondly, we have proposed a method to construct a Partially Observable Markov Decision Process (POMDP) directly from gene expression data. Our novel POMDP construction method calculates approximate observation-action values for each possible observation, and applies hidden state identification techniques to those approximate values for building the ultimate POMDP. Results show that our constructed POMDPs perform better than existing solutions in terms of both time requirements and solution quality. For generating high quality artificial gene expression data, we have proposed a novel multi-model gene expression data enrichment framework. We have combined four gene expression data generation models into one unified framework, and tried to benefit all of them concurrently. We have sampled from each generative models separately, pooled the generated samples, and output the best ones based on a multi-objective selection mechanism. Results show that our proposed multi-model gene expression data generation framework is able to produce high quality artificial samples from which inferred regulatory networks are better than the regulatory networks inferred from original datasets.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (32)
Regulation of gene expression
Regulation of gene expression, or gene regulation, includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products (protein or RNA). Sophisticated programs of gene expression are widely observed in biology, for example to trigger developmental pathways, respond to environmental stimuli, or adapt to new food sources. Virtually any step of gene expression can be modulated, from transcriptional initiation, to RNA processing, and to the post-translational modification of a protein.
Gene expression
Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, proteins or non-coding RNA, and ultimately affect a phenotype. These products are often proteins, but in non-protein-coding genes such as transfer RNA (tRNA) and small nuclear RNA (snRNA), the product is a functional non-coding RNA.
Gene regulatory network
A gene (or genetic) regulatory network (GRN) is a collection of molecular regulators that interact with each other and with other substances in the cell to govern the gene expression levels of mRNA and proteins which, in turn, determine the function of the cell. GRN also play a central role in morphogenesis, the creation of body structures, which in turn is central to evolutionary developmental biology (evo-devo).
Show more
Related publications (41)

Meeting our Makers:Uncovering the cis-regulatory activity of transposable elements using statistical learning

Cyril David Son-Tuyên Pulver

The adaptation of organisms to their environment depends on the innovative potential inherent to genetic variation. In complex organisms such as mammals, processes like development and immunity require tight gene regulation. Complex forms emerge more often ...
EPFL2024

Statistical learning quantifies transposable element-mediated cis-regulation

Didier Trono, Evaristo Jose Planet Letschert, Julien Léonard Duc, Alexandre Coudray, Julien Paul André Pontis, Delphine Yvette L Grun, Cyril David Son-Tuyên Pulver, Shaoline Sheppard

Background: Transposable elements (TEs) have colonized the genomes of most metazoans, and many TE-embedded sequences function as cis-regulatory elements (CREs) for genes involved in a wide range of biological processes from early embryo- genesis to innate ...
2023

Chromatin modules and their implication in genomic organization and gene regulation

Bart Deplancke, Guido Van Mierlo, Judith Franziska Kribelbauer

Regulation of gene expression is a complex but highly guided process. While genomic technologies and computational approaches have allowed high-throughput mapping of cis-regulatory elements (CREs) and their interactions in 3D, their precise role in regulat ...
ELSEVIER SCIENCE LONDON2023
Show more
Related MOOCs (6)
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Genetics and Brain Development
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.