Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In the context of warped extra-dimensional models which address both the Planck-weak- and flavor-hierarchies of the Standard Model (SM), it has been argued that certain observables can be calculated within the 5D effective field theory only with the Higgs field propagating in the bulk of the extra dimension, just like other SM fields. The related studies also suggested an interesting form of decoupling of the heavy Kaluza-Klein (KK) fermion states in the warped 5D SM in the limit where the profile of the SM Higgs approaches the IR brane. We demonstrate that a similar phenomenon occurs when we include the mandatory KK excitations of the SM Higgs in loop diagrams giving dipole operators for SM fermions, where the earlier work only considered the SM Higgs (zero mode). In particular, in the limit of a quasi IR-localized SM Higgs, the effect from summing over KK Higgs modes is unsuppressed (yet finite), in contrast to the naive expectation that KK Higgs modes decouple as their masses become large. In this case, a wide range of KK Higgs modes have quasi-degenerate masses and enhanced couplings to fermions relative to those of the SM Higgs, which contribute to the above remarkable result. In addition, we find that the total contribution from KK Higgs modes in general can be comparable to that from the SM Higgs alone. It is also interesting that KK Higgs couplings to KK fermions of the same chirality as the corresponding SM modes have an unsuppressed overall contribution, in contrast to the result from the earlier studies involving the SM Higgs. Our studies suggest that KK Higgs bosons are generally an indispensable part of the warped 5D SM, and their phenomenology such as signals at the LHC are worth further investigation.
Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Rakesh Chawla, Matteo Galli, Anna Mascellani, João Miguel das Neves Duarte, Tagir Aushev, Lei Zhang, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Wei Shi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Muhammad Shoaib, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Zhen Liu, Muhammad Waqas, Hui Wang, Seungkyu Ha, Long Wang, Pratyush Das, Miao Hu, Anton Petrov, Xin Sun, Xin Gao, Chen Chen, Valérie Scheurer, Giovanni Mocellin, Muhammad Ansar Iqbal, Lukas Layer
Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Arvind Shah, Rakesh Chawla, Anna Mascellani, João Miguel das Neves Duarte, Tagir Aushev, Lei Zhang, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Jessica Prisciandaro, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Wei Shi, Guido Andreassi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Matthias Weber, Muhammad Shoaib, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Zhen Liu, Muhammad Waqas, Hui Wang, Seungkyu Ha, Maren Tabea Meinhard, Long Wang, Miao Hu, Anton Petrov, Xin Sun, Xin Gao, Chen Chen, Valérie Scheurer, Giovanni Mocellin, Muhammad Ansar Iqbal, Lukas Layer