Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Silicon and Silicon carbide particles have been investigated by the mean of infrared (IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) to establish their surface states. The results of this research are based on the estimation of the area under the high resolution peaks by isosceles triangles. This approach leads to the repartition of the particles surfaces in term of atomic percentage and of type of bonds. The surface of silicon particles is divided up into 54.85% of Si-O bonds and 36.85% of Si-Si bonds. The remaining surface is constituted of zeolite, the raw material used to produce the silicon particles. The surface of silicon carbide particles consists of 50.44% of Si-C bonds, 24.01% of Si-O bonds and 25.55% of graphite. 10.01% of the graphite is derived from the oxidation of Si-C bonds while 11.48% is due to contamination. The zeta potential evolution versus pH confirms the distribution of chemical groups found.
Davide Ferri, Oliver Kröcher, Filippo Buttignol
Nako Nakatsuka, Mattia Petrelli