Publication

A priori error estimates for discontinuous finite volume discretizations of the Brinkman optimal control problem

Ricardo Esteban Ruiz Baier
2015
Report or working paper
Abstract

In this paper we discuss a discontinuous finite volume method for the approximation of distributed optimal control problem governed by the Brinkman equations written in terms of velocity and pressure. An additional force field is sought such that it produces a velocity matching a desired, known value. The discretization of state and co-state velocity and pressure fields follows a lowest order discontinuous finite volume scheme, whereas three different approaches are used for the control approximation: variational discretization, element-wise constant, and element-wise linear functions. We employ the optimize-then-discretize approach to approximate the control problem, and the resulting discretized formulation is non-symmetric. We derive a priori error estimates for velocity, pressure, and control in natural norms. A set of numerical examples is finally presented to illustrate the performance of the method and to confirm the predicted accuracy of the state, co-state and control approximations under various scenarios including 2D and 3D cases.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (32)
Control theory
Control theory is a field of control engineering and applied mathematics that deals with the control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the application of system inputs to drive the system to a desired state, while minimizing any delay, overshoot, or steady-state error and ensuring a level of control stability; often with the aim to achieve a degree of optimality. To do this, a controller with the requisite corrective behavior is required.
Optimal control
Optimal control theory is a branch of mathematical optimization that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. It has numerous applications in science, engineering and operations research. For example, the dynamical system might be a spacecraft with controls corresponding to rocket thrusters, and the objective might be to reach the moon with minimum fuel expenditure.
Finite element method
The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential. The FEM is a general numerical method for solving partial differential equations in two or three space variables (i.e., some boundary value problems).
Show more
Related publications (43)

Distributionally Robust Linear Quadratic Control

Daniel Kuhn, Bahar Taskesen, Cagil Kocyigit

Linear-Quadratic-Gaussian (LQG) control is a fundamental control paradigm that is studied in various fields such as engineering, computer science, economics, and neuroscience. It involves controlling a system with linear dynamics and imperfect observations ...
2023

Efficient algorithms for wave problems

Boris Bonev

Wave phenomena manifest in nature as electromagnetic waves, acoustic waves, and gravitational waves among others.Their descriptions as partial differential equations in electromagnetics, acoustics, and fluid dynamics are ubiquitous in science and engineeri ...
EPFL2021

Complexity analysis of stochastic gradient methods for PDE-constrained optimal control problems with uncertain parameters

Fabio Nobile, Sebastian Krumscheid, Matthieu Claude Martin

We consider the numerical approximation of an optimal control problem for an elliptic Partial Differential Equation (PDE) with random coefficients. Specifically, the control function is a deterministic, distributed forcing term that minimizes the expected ...
2021
Show more
Related MOOCs (32)
Intro to Traffic Flow Modeling and Intelligent Transport Systems
Learn how to describe, model and control urban traffic congestion in simple ways and gain insight into advanced traffic management schemes that improve mobility in cities and highways.
Intro to Traffic Flow Modeling and Intelligent Transport Systems
Learn how to describe, model and control urban traffic congestion in simple ways and gain insight into advanced traffic management schemes that improve mobility in cities and highways.
Warm-up for EPFL
Warmup EPFL est destiné aux nouvelles étudiantes et étudiants de l'EPFL.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.