Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Crowdsourcing is widely proposed as a method to solve large variety of judgement tasks, such as classifying website content, peer grading in online courses, or collecting real-world data. As the data reported by workers cannot be verified, there is a tendency to report random data without actually solving the task. This can be countered by making the reward for an answer depend on its consistency with answers given by other workers, an approach called {\em peer consistency}. However, it is obvious that the best strategy in such schemes is for all workers to report the same answer without solving the task. Dasgupta and Ghosh (WWW 2013) show that in some cases exerting high effort can be encouraged in the highest-paying equilibrium. In this paper we present a general mechanism that implements this idea and is applicable to most crowdsourcing settings. Furthermore, we experimentally test the novel mechanism, and validate its theoretical properties.
Carmela González Troncoso, Bogdan Kulynych
Christophe Ballif, Marine Dominique C. Cauz, Laure-Emmanuelle Perret Aebi