Publication

Fine-Scale Skeletal Banding Can Distinguish Symbiotic from Asymbiotic Species among Modern and Fossil Scleractinian Corals

Résumé

Understanding the evolution of scleractinian corals on geological timescales is key to predict how modern reef ecosystems will react to changing environmental conditions in the future. Important to such efforts has been the development of several skeleton-based criteria to distinguish between the two major ecological groups of scleractinians: zooxanthellates, which live in symbiosis with dinoflagellate algae, and azooxanthellates, which lack endosymbiotic dinoflagellates. Existing criteria are based on overall skeletal morphology and bio/geo-chemical indicators-none of them being particularly robust. Here we explore another skeletal feature, namely fine-scale growth banding, which differs between these two groups of corals. Using various ultra-structural imaging techniques (e.g., TEM, SEM, and NanoSIMS) we have characterized skeletal growth increments, composed of doublets of optically light and dark bands, in a broad selection of extant symbiotic and asymbiotic corals. Skeletons of zooxanthellate corals are characterized by regular growth banding, whereas in skeletons of azooxanthellate corals the growth banding is irregular. Importantly, the regularity of growth bands can be easily quantified with a coefficient of variation obtained by measuring bandwidths on SEM images of polished and etched skeletal surfaces of septa and/or walls. We find that this coefficient of variation (lower values indicate higher regularity) ranges from similar to 40 to similar to 90% in azooxanthellate corals and from similar to 5 to similar to 15% in symbiotic species. With more than 90% (28 out of 31) of the studied corals conforming to this microstructural criterion, it represents an easy and robust method to discriminate between zooxanthellate and azooxanthellate corals. This microstructural criterion has been applied to the exceptionally preserved skeleton of the Triassic (Norian, ca. 215 Ma) scleractinian Volzeia sp., which contains the first example of regular, fine-scale banding of thickening deposits in a fossil coral of this age. The regularity of its growth banding strongly suggests that the coral was symbiotic with zooxanthellates.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (36)
Endosymbiote
Un endosymbiote ou endosymbionte est un organisme qui vit à l'intérieur d'une autre cellule ou d'un autre organisme, l'association ainsi formée est une endosymbiose. Pour exemple, la bactérie rhizobium fixatrice d'azote vit dans les nodosités racinaires des légumineuses ou encore l'algue unicellulaire (zooxanthelle) vivant dans les coraux et qui leur permet de construire leur squelette externe ou enfin les bactéries endosymbiotes des insectes qui leur fournissent entre 10 et 15 % de leurs nutriments essentiels, ce qui traduit une large diversité d'endosymbiose.
Corail
Le terme corail désigne un certain nombre d'animaux marins appartenant à l'embranchement des cnidaires, caractérisés par leur squelette dur. Dans un sens restreint cette appellation est utilisée par les scientifiques pour désigner l'ordre des Scleractinia, les coraux durs bâtisseurs de récifs, mais dans un sens plus large le terme est parfois employé pour désigner de nombreux autres cnidaires fixes, comme des gorgones. Les coraux sont généralement des colonies de polypes qui vivent regroupées pour former des superorganismes partageant un squelette calcaire.
Récif corallien
thumb|upright=1.5|Le corail, dont les colonies forment les récifs. thumb|upright=1.5|Colonie d’Acropora pulchra. Un récif corallien ou barrière de corail est une structure naturelle bioconstruite à l'origine de laquelle sont essentiellement les coraux. La plus grande de ces formations, la Grande Barrière de corail, au large des côtes australiennes, s'étend sur quelque et est visible depuis l'espace. La Nouvelle-Calédonie quant à elle, abrite dans ses lagons le deuxième ensemble corallien de la planète et la plus longue barrière récifale continue avec ses .
Afficher plus
Publications associées (39)

Photobiology and metabolic interactions in the symbiotic jellyfish Cassiopea

Niclas Heidelberg Lyndby

The symbiont-bearing jellyfish Cassiopea live a benthic lifestyle, positioning themselves upside-down on sediments in shallow waters to allow their endosymbiotic algae to photosynthesize in the sunlight. Over the last decades Cassiopea has become increasin ...
EPFL2023

Metabolism of the symbiotic jellyfish Cassiopea in a changing environment

Gaëlle Delphine Toullec

Ocean warming and other anthropogenic impacts have led to a global decline in many photosymbiotic cnidarians, most notably reef-building corals. But some species of the symbiotic and (sub-)tropical upside-down jellyfish Cassiopea are increasingly reported ...
EPFL2023

Symbiotic nutrient exchange enhances the long-term survival of cassiosomes, the autonomous stinging-cell structures of Cassiopea

Anders Meibom, Cristina Martin Olmos, Nils Rädecker, Claudia Isabella Pogoreutz, Guilhem Maurice Louis Banc-Prandi, Gaëlle Delphine Toullec, Niclas Heidelberg Lyndby

Medusae of the widely distributed upside-down jellyfish Cassiopea release autonomous, mobile stinging structures. These so-called cassiosomes play a role in predator defense and prey capture, and are major contributors to “contactless” stinging incidents i ...
2023
Afficher plus
MOOCs associés (6)
Introduction à l'immunologie (part 1)
Ce cours décrit les mécanismes fondamentaux du système immunitaire pour mieux comprendre les bases immunologiques dela vaccination, de la transplantation, de l’immunothérapie, de l'allergie et des mal
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.