Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
V2O5/WO3-TiO2 selective catalytic reduction (SCR) catalysts with a V2O5 loading of 1.7, 2.0, 2.3, 2.6, 2.9, 3.2 and 3.5 wt. % were investigated in the fresh state and after hydrothermal aging at 600 degrees C for 16 h. The catalysts were characterized by means of nitrogen physisorption, X-ray diffraction and X-ray absorption spectroscopy. In the fresh state, the SCR activity increased with increasing V loading. Upon aging, the catalysts with up to 2.3 wt. % V2O5 exhibited higher NOx reduction activity than in the fresh state, while the catalysts with more than 2.6 wt. % V2O5 showed increasing deactivation tendencies. The observed activation and deactivation were correlated with the change of the VOx and WOx surface coverages. Only catalysts with a VOx coverage below 50% in the aged state did not show deactivation tendencies. With respect to tungsten, above one monolayer of WOx, WO3 particles were formed leading to loss of surface acidity, sintering, catalyst deactivation and early NH3 slip. An optimal compromise between activity and hydrothermal aging resistance could be obtained only with V2O5 between 2.0 and 2.6 wt. %.
Davide Ferri, Pierdomenico Biasi, Filippo Buttignol
Davide Ferri, Maarten Nachtegaal
Davide Ferri, Oliver Kröcher, Maarten Nachtegaal, Gaël Peng