Publication

The role of the coherence in the cross-correlation analysis of diffraction patterns from two-dimensional dense mono-disperse systems

Abstract

The investigation of the static and dynamic structural properties of colloidal systems relies on techniques capable of atomic resolution in real space and femtosecond resolution in time. Recently, the cross-correlation function (CCF) analysis of both X-rays and electron diffraction patterns from dilute and dense aggregates has demonstrated the ability to retrieve information on the sample's local order and symmetry. Open questions remain regarding the role of the beam coherence in the formation of the diffraction pattern and the properties of the CCF, especially in dense systems. Here, we simulate the diffraction patterns of dense two-dimensional monodisperse systems of different symmetries, varying the transverse coherence of the probing wave, and analyze their CCF. We study samples with different symmetries at different size scale, as for example, pentamers arranged into a four-fold lattice where each pentamer is surrounded by triangular lattices, both ordered and disordered. In such systems, different symmetry modulations are arising in the CCF at specific scattering vectors. We demonstrate that the amplitude of the CCF is a fingerprint of the degree of the ordering in the sample and that at partial transverse coherence, the CCF of a dense sample corresponds to that of an individual scattering object.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.