Publication

Quench Detection and Protection of the HTS Insert Coils

Natalia Hanna Glowa
2016
EPFL thesis
Abstract

As a result of extremely high upper critical fields B_c2, high temperature superconductors (HTS) have the potential to be used as high field insert coils in magnet systems where the background field is provided by low temperature superconductors (LTS) with the aim of application of such systems for high energy physics, nuclear magnetic resonance and energy storage. Among the superconductors discovered in late 1980s, one that is widely studied is YBCO coated conductor (CC). Despite the advanced 2G conductor technology in recent years allowing for manufacturing of long lengths of YBCO CC, up to 1 km, the crucial issue in practical application of the hybrid systems with YBCO insert coil remain the quench detection and protection of the insert. Unlike in LTS magnets, the quench propagation in HTS is significantly slower, which makes quench detection and consecutively protection, very challenging. Following a new approach for quench protection a non-insulated HTS insert coil was manufactured at the CRPP. In case of quench, the current is expected to by-pass the normal zone and prevent the coil from a permanent damage. The idea of non-insulated free-standing coils has been already studied and brought promising results in terms of self-protection of such coils. However, in a hybrid system of LTS-HTS, the quench behaviour needs careful evaluation that includes magneto-thermo-electrical study. The objective of this work is to study and discuss the applicability of HTS insert coils (insulated and non-insulated) by addressing the issue of their quench detection and protection schemes. The starting point for the analysis is studying the existing design according to CRPP specifications taking into account various operating modes together with detection and protection schemes. Finally, general guidelines for the design of a successful LTS-HTS magnet system will be discussed.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Superconducting magnet
A superconducting magnet is an electromagnet made from coils of superconducting wire. They must be cooled to cryogenic temperatures during operation. In its superconducting state the wire has no electrical resistance and therefore can conduct much larger electric currents than ordinary wire, creating intense magnetic fields. Superconducting magnets can produce stronger magnetic fields than all but the strongest non-superconducting electromagnets, and large superconducting magnets can be cheaper to operate because no energy is dissipated as heat in the windings.
Superconductivity
Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike an ordinary metallic conductor, whose resistance decreases gradually as its temperature is lowered, even down to near absolute zero, a superconductor has a characteristic critical temperature below which the resistance drops abruptly to zero.
High-temperature superconductivity
High-temperature superconductors (abbreviated high-Tc or HTS) are defined as materials with critical temperature (the temperature below which the material behaves as a superconductor) above , the boiling point of liquid nitrogen. They are only "high-temperature" relative to previously known superconductors, which function at even colder temperatures, close to absolute zero. The "high temperatures" are still far below ambient (room temperature), and therefore require cooling.
Show more
Related publications (94)

The MAgnet Design Explorer algorithm (MADE) for LTS, Hybrid or HTS toroidal and poloidal systems of a tokamak with a view to DEMO

The European Roadmap to Fusion Electricity (Federici et al., 2018) [1] details the path to complete within the next three decades the DEMOnstration power plant, DEMO, aiming to a net gain of Energy Q=40. The 2018 DEMO baseline considers a 2 GW tokamak devi ...
ELSEVIER SCIENCE SA2023

Progress in the design and manufacturing of the EDIPO 2 cryostat

Pierluigi Bruzzone, Kamil Sedlák, Roberto Guarino, Evgeny Solodko

A major upgrade of the European DIPOle (EDIPO) test facility, which will allow the testing of superconducting samples both for fusion and for high-energy physics applications, is taking place at the Swiss Plasma Center. With a target background field of 15 ...
ELSEVIER SCI LTD2023

Experimental study of stability, quench propagation and detection methods on 15 kA sub-scale HTS fusion conductors in SULTAN

Pierluigi Bruzzone, Kamil Sedlák, Nikolay Bykovskiy, Ortensia Dicuonzo

High-temperature superconductors (HTSs) enable exclusive operating conditions for fusion magnets, boosting their performance up to 20 T generated magnetic fields in the temperature range from 4 K to 20 K. One of the main technological issues of HTS conduct ...
IOP Publishing Ltd2023
Show more
Related MOOCs (7)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.