Publication

Lactoferrin during lactation reduces lipopolysaccharide-induced brain injury

Yohan Van de Looij
2016
Article
Résumé

Lactoferrin (Lf), component of maternal milk, has antioxidant, anti-inflammatory and antimicrobial properties. Neuroprotective effects of Lf on the immature brain have been recently shown in rodent models of intrauterine growth restriction and cerebral hypoxia/ischemia. Here we postulated that Lf could also have beneficial effects on preterm inflammatory brain injury. Lf was supplemented in maternal food during lactation and lipopolysaccharide (LPS) was injected in subcortical white matter of rat pups at postnatal day 3 (P3). Effect of maternal Lf supplementation was investigated 24 h (P4), 4 (P7), or 21 days (P24) after LPS injection mainly on the striatum. Lateral ventricle and brain structures volumes were quantified. Microstructure was evaluated by diffusion tensor imaging, neurite orientation dispersion and density imaging as well as electron microscopy. Neurochemical profile was measured by (1) H-magnetic resonance spectroscopy. GFAP protein, proinflammatory cytokines mRNA expression microglial activation were assessed. Lf displayed neuroprotective effects as shown by reduced LPS-induced ventriculomegaly, brain tissue loss, and microstructural modifications, including myelination deficit. (1) H-MRS neurochemical profile was less altered through an antioxidant action of Lf. Despite the lack of effect on LPS-induced proinflammatory cytokines genes expression and on reactive gliosis, microglia was less activated under Lf treatment. In conclusion, Lf supplemented in food during lactation attenuated acute and long-term cerebral LPS-induced alterations. This provides a new evidence for a promising use of Lf as a preventive neuroprotective approach in preterm encephalopathy. © 2016 BioFactors, 42(3):323-336, 2016.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (43)
Preterm birth
Preterm birth, also known as premature birth, is the birth of a baby at fewer than 37 weeks gestational age, as opposed to full-term delivery at approximately 40 weeks. Extreme preterm is less than 28 weeks, very early preterm birth is between 28 and 32 weeks, early preterm birth occurs between 32 and 34 weeks, late preterm birth is between 34 and 36 weeks' gestation. These babies are also known as premature babies or colloquially preemies (American English) or premmies (Australian English).
Astrogliosis
Astrogliosis (also known as astrocytosis or referred to as reactive astrogliosis) is an abnormal increase in the number of astrocytes due to the destruction of nearby neurons from central nervous system (CNS) trauma, infection, ischemia, stroke, autoimmune responses or neurodegenerative disease. In healthy neural tissue, astrocytes play critical roles in energy provision, regulation of blood flow, homeostasis of extracellular fluid, homeostasis of ions and transmitters, regulation of synapse function and synaptic remodeling.
Retard de croissance intra-utérin
Le 'retard de croissance intra-utérin' (RCIU) (fetal growth restriction en anglais) décrit un fœtus qui ne grossit pas selon son potentiel biologique attendu – un ralentissement de la croissance. C'est une complication relativement courante de la grossesse. Le vrai retard de croissance intra utérin, par rapport à une petite constitution, est une pathologie dans laquelle le placenta ne parvient pas à fournir un approvisionnement adéquat en oxygène et en nutriments au fœtus ; on parle alors d'insuffisance placentaire.
Afficher plus
Publications associées (59)

Early Neuroprotective Effects of Bovine Lactoferrin Associated with Hypothermia after Neonatal Brain Hypoxia-Ischemia in Rats

Yohan Van de Looij

Neonatal hypoxic-ischemic (HI) encephalopathy (HIE) in term newborns is a leading cause of mortality and chronic disability. Hypothermia (HT) is the only clinically available therapeutic intervention; however, its neuroprotective effects are limited. Lacto ...
Basel2023

New insights into rodent brain microstructure and metabolism in hepatic encephalopathy

Jessie Julie Mosso

Type C hepatic encephalopathy (HE) is a severe neuropsychiatric complication of chronic liver disease, for which the prognosis is poor in the absence of liver transplantation. Cirrhosis in type C HE leads to a toxic accumulation of ammonia in the blood, wh ...
EPFL2023

Behavioral outcome of very preterm children at 5 years of age: Prognostic utility of brain tissue volumes at term-equivalent-age, perinatal, and environmental factors

Djalel Eddine Meskaldji, Laura Ioana Gui, Serafeim Loukas

ObjectivePrematurity is associated with a high risk of long-term behavioral problems. This study aimed to assess the prognostic utility of volumetric brain data at term-equivalent-age (TEA), clinical perinatal factors, and parental social economic risk in ...
WILEY2023
Afficher plus
MOOCs associés (12)
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.