Publication

Proton-detected 3D N-15/H-1/H-1 isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70 kHz MAS

Jayasubba Reddy Yarava
2016
Journal paper
Abstract

Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dynamics studies of a variety of chemical and biological systems. In particular, CSA of amide protons can provide piercing insights into hydrogen-bonding interactions that vary with the backbone conformation of a protein and dynamics. However, the narrow span of amide proton resonances makes it very difficult to measure H-1 CSAs of proteins even by using the recently proposed 2D H-1/H-1 anisotropic/isotropic chemical shift (CSA/CS) correlation technique. Such difficulties due to overlapping proton resonances can in general be overcome by utilizing the broad span of isotropic chemical shifts of low-gamma nuclei like N-15. In this context, we demonstrate a proton-detected 3D N-15/H-1/H-1 CS/CSA/CS correlation experiment at fast MAS frequency (70 kHz) to measure 1H CSA values of unresolved amide protons of N-acetyl-N-15-L-valyl-N-15-L-leucine (NAVL). (C) 2016 Elsevier Inc. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.