Publication

Computing the Impact of White and Flicker Noise in Continuous-Time Integrator-Based ADCs

Abstract

From first-order incremental Sigma Delta converters to controlled-oscillator-based converters, many ADC architectures are based on the continuous-time integration of the input signal. However, the accuracy of such converters cannot be properly estimated without establishing the impact of noise. In fact, noise is also integrated, resulting in a random error that is added to the measured value. Since drifting phenomena may make simulations and practical measurements unable to ensure long-term reliability of the converters, a theoretical tool is required. This paper presents a solution to compute the standard deviation of the noise-generated error in continuous-time integrator-based ADCs, under the assumption that a previous measure is used to calibrate the system. In addition to produce a realistic case, this assumption allows to handle a theoretical issue that made the problem not properly solvable. The theory is developed, the equations are solved in the cases of pure white noise and pure flicker noise, and the implementation issues implied by the provided formula are addressed.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Pink noise
Pink noise, noise or fractal noise is a signal or process with a frequency spectrum such that the power spectral density (power per frequency interval) is inversely proportional to the frequency of the signal. In pink noise, each octave interval (halving or doubling in frequency) carries an equal amount of noise energy. Pink noise sounds like a waterfall. It is often used to tune loudspeaker systems in professional audio. Pink noise is one of the most commonly observed signals in biological systems.
Noise (electronics)
In electronics, noise is an unwanted disturbance in an electrical signal. Noise generated by electronic devices varies greatly as it is produced by several different effects. In particular, noise is inherent in physics and central to thermodynamics. Any conductor with electrical resistance will generate thermal noise inherently. The final elimination of thermal noise in electronics can only be achieved cryogenically, and even then quantum noise would remain inherent. Electronic noise is a common component of noise in signal processing.
Colors of noise
In audio engineering, electronics, physics, and many other fields, the color of noise or noise spectrum refers to the power spectrum of a noise signal (a signal produced by a stochastic process). Different colors of noise have significantly different properties. For example, as audio signals they will sound differently to human ears, and as they will have a visibly different texture. Therefore, each application typically requires noise of a specific color.
Show more
Related publications (36)

Model-based constraints for trajectory determination of quad-copters: Design, calibration & merits for direct orientation

Jan Skaloud, Davide Antonio Cucci, Kenneth Joseph Paul

This paper proposes a novel method to improve georeferencing of airborne laser scanning by improved trajectory estimation using Vehicle Dynamic Model. In Vehicle Dynamic Model (VDM), the relationship between the dynamics of the platform and control inputs ...
2023

Experimental Validation of a Unified and Linear State Estimation Method for Hybrid AC/DC Microgrids

Mario Paolone, Willem Lambrichts

This paper presents the experimental validation of a linear recursive state estimation (SE) process for hybrid AC/DC microgrids proposed in the authors' previous work. The SE uses a unified and linear measurement model that relies on the use of synchronize ...
IEEE2023

RMSSD Is More Sensitive to Artifacts Than Frequency-Domain Parameters: Implication in Athletes? Monitoring

Jean-Marc Vesin, Grégoire Millet, Sasan Yazdani

Easy-to-use and accurate heart rate variability (HRV) assessments are essential in athletes??? follow-up, but artifacts may lead to erroneous analysis. Artifact detection and correction are the purpose of extensive literature and implemented in dedicated a ...
JOURNAL SPORTS SCIENCE & MEDICINE2022
Show more
Related MOOCs (19)
Digital Signal Processing [retired]
The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a
Digital Signal Processing
Digital Signal Processing is the branch of engineering that, in the space of just a few decades, has enabled unprecedented levels of interpersonal communication and of on-demand entertainment. By rewo
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.