Publication

Extracting Maya Glyphs from Degraded Ancient Documents via Image Segmentation

Abstract

We present a system for automatically extracting hieroglyph strokes from images of degraded ancient Maya codices. Our system adopts a region-based image segmentation framework. Multi-resolution super-pixels are first extracted to represent each image. A Support Vector Machine (SVM) classifier is used to label each super-pixel region with a probability to belong to foreground glyph strokes. Pixelwise probability maps from multiple super-pixel resolution scales are then aggregated to cope with various stroke widths and background noise. A fully connected Conditional Random Field model is then applied to improve the labeling consistency. Segmentation results show that our system preserves delicate local details of the historic Maya glyphs with various stroke widths and also reduces background noise. As an application, we conduct retrieval experiments using the extracted binary images. Experimental results show that our automatically extracted glyph strokes achieve comparable retrieval results to those obtained using glyphs manually segmented by epigraphers in our team.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Image segmentation
In and computer vision, image segmentation is the process of partitioning a into multiple image segments, also known as image regions or image objects (sets of pixels). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to analyze. Image segmentation is typically used to locate objects and boundaries (lines, curves, etc.) in images. More precisely, image segmentation is the process of assigning a label to every pixel in an image such that pixels with the same label share certain characteristics.
Medical image computing
Medical image computing (MIC) is an interdisciplinary field at the intersection of computer science, information engineering, electrical engineering, physics, mathematics and medicine. This field develops computational and mathematical methods for solving problems pertaining to medical images and their use for biomedical research and clinical care. The main goal of MIC is to extract clinically relevant information or knowledge from medical images.
Background noise
Background noise or ambient noise is any sound other than the sound being monitored (primary sound). Background noise is a form of noise pollution or interference. Background noise is an important concept in setting noise levels. Background noises include environmental noises such as water waves, traffic noise, alarms, extraneous speech, bioacoustic noise from animals, and electrical noise from devices such as refrigerators, air conditioning, power supplies, and motors.
Show more
Related publications (34)

Adaptive phase correction of diffusion-weighted images

Jean-Philippe Thiran, Marco Pizzolato, Maxime Descoteaux

Phase correction (PC) is a preprocessing technique that exploits the phase of images acquired in Magnetic Resonance Imaging (MRI) to obtain real-valued images containing tissue contrast with additive Gaussian noise, as opposed to magnitude images which fol ...
ACADEMIC PRESS INC ELSEVIER SCIENCE2020

Achieving high-resolution thermal imagery in low-contrast lake surface waters by aerial remote sensing and image registration

David Andrew Barry, Ulrich Lemmin, Daniel Sage, Abolfazl Irani Rahaghi

A two-platform measurement system for realizing airborne thermography of the Lake Surface Water Temperature (LSWT) with ~0.8 m pixel resolution (sub-pixel satellite scale) is presented. It consists of a tethered Balloon Launched Imaging and Monitoring Plat ...
2019

Achieving high-resolution thermal imagery in low-contrast lake surface waters by aerial remote sensing and image registration

David Andrew Barry, Ulrich Lemmin, Daniel Sage, Abolfazl Irani Rahaghi

A two-platform measurement system for realizing airborne thermography of the Lake Surface Water Temperature (LSWT) with ~0.8 m pixel resolution (sub-pixel satellite scale) is presented. It consists of a tethered Balloon Launched Imaging and Monitoring Plat ...
2019
Show more
Related MOOCs (6)
Digital Signal Processing [retired]
The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a
Digital Signal Processing
Digital Signal Processing is the branch of engineering that, in the space of just a few decades, has enabled unprecedented levels of interpersonal communication and of on-demand entertainment. By rewo
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Show more