Publication

Standardization proposal of soft tissue artefact description for data sharing in human motion measurements

Kamiar Aminian, Arnaud Barré
2017
Journal paper
Abstract

Soft tissue artefact (STA) represents one of the main obstacles for obtaining accurate and reliable skeletal kinematics from motion capture. Many studies have addressed this issue, yet there is no consensus on the best available bone pose estimator and the expected errors associated with relevant results. Furthermore, results obtained by different authors are difficult to compare due to the high variability and specificity of the phenomenon and the different metrics used to represent these data. Therefore, the aim of this study was twofold: firstly, to propose standards for description of STA; and secondly, to provide illustrative STA data samples for body segments in the upper and lower extremities and for a range of motor tasks specifically, level walking, stair ascent, sit-to-stand, hip- and knee-joint functional movements, cutting motion, running, hopping, arm elevation and functional upper-limb movements. The STA dataset includes motion of the skin markers measured in vivo and ex vivo using stereophotogrammetry as well as motion of the underlying bones measured using invasive or bio-imaging techniques (i.e., X-ray fluoroscopy or MRI). The data are accompanied by a detailed description of the methods used for their acquisition, with information given about their quality as well as characterization of the STA using the proposed standards. The availability of open-access and standard-format STA data will be useful for the evaluation and development of bone pose estimators thus contributing to the advancement of three-dimensional human movement analysis and its translation into the clinical practice and other applications.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (37)
Fluoroscopy
Fluoroscopy (flʊəˈrɒskəpi) is an imaging technique that uses X-rays to obtain real-time moving images of the interior of an object. In its primary application of medical imaging, a fluoroscope (ˈflʊərəˌskoʊp) allows a surgeon to see the internal structure and function of a patient, so that the pumping action of the heart or the motion of swallowing, for example, can be watched. This is useful for both diagnosis and therapy and occurs in general radiology, interventional radiology, and image-guided surgery.
Upper limb
The upper limbs or upper extremities are the forelimbs of an upright-postured tetrapod vertebrate, extending from the scapulae and clavicles down to and including the digits, including all the musculatures and ligaments involved with the shoulder, elbow, wrist and knuckle joints. In humans, each upper limb is divided into the arm, forearm and hand, and is primarily used for climbing, lifting and manipulating objects. In formal usage, the term "arm" only refers to the structures from the shoulder to the elbow, explicitly excluding the forearm, and thus "upper limb" and "arm" are not synonymous.
X-ray generator
An X-ray generator is a device that produces X-rays. Together with an X-ray detector, it is commonly used in a variety of applications including medicine, X-ray fluorescence, electronic assembly inspection, and measurement of material thickness in manufacturing operations. In medical applications, X-ray generators are used by radiographers to acquire x-ray images of the internal structures (e.g., bones) of living organisms, and also in sterilization. An X-ray generator generally contains an X-ray tube to produce the X-rays.
Show more
Related publications (41)

In vivo X-ray microtomography locally affects stem radial growth with no immediate physiological impact

Pascal Turberg, Charlotte Grossiord, Hervé Cochard, Laura Mekarni

Microcomputed tomography (mu CT) is a nondestructive X-ray imaging method used in plant physiology to visualize in situ plant tissues that enables assessments of embolized xylem vessels. Whereas evidence for X-ray-induced cellular damage has been reported, ...
Oxford Univ Press Inc2024

Effect of wettability and textile architecture on fluid displacement and pore formation during infiltration of carbon fibrous preforms

Véronique Michaud, Baris Çaglar, Helena Luisa Teixido Pedarros

We seek to address how air entrapment mechanisms during infiltration are influenced by the wetting characteristics of the fluid and the pore network formed by the reinforcement. To this end, we evaluated the behavior of two model fluids with different surf ...
London2023

Measurement and modelling of dynamic fluid saturation in carbon reinforcements

Véronique Michaud, Baris Çaglar, Helena Luisa Teixido Pedarros, Guillaume Clément Broggi

We propose a methodology to monitor the progressive saturation of a non-translucent unidirectional carbon fabric stack through its thickness by means of X-ray radiography and extract the dynamic saturation curves using image analysis. Four constant flow ra ...
2023
Show more
Related MOOCs (9)
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.