Publication

Encapsulation of Insulin-Secreting Cells Expressing a Genetically Encoded Fluorescent Calcium Indicator for Cell-Based Sensing In Vivo

Abstract

The development of cell-based biosensors that give insight into cell and tissue function in vivo is an attractive technology for biomedical research. Here, the development of a cell line expressing a fluorescent calcium sensor for the study of beta-cell function in vivo is reported. The bioresponsive cell model is based on INS-1E pancreatic beta-cells, stably expressing the genetically encoded cameleon-based fluorescent sensor YC3.6(cyto). Following single-cell selection and expansion, functional testing and in vitro encapsulation experiments are used to identify a suitable clone of INS-1E cells expressing the calcium sensor. This clone is transplanted subcutaneous in mouse using a cell macroencapsulation system based on flat sheet porous membranes. Cells in the implanted capsules are able to respond to glucose in vivo by secreting insulin and thereby contributing to the regulation of glycaemia in the mice. Furthermore, fluorescence imaging of explanted devices shows that encapsulated cells maintain high level expression of YC3.6(cyto) in vivo. In conclusion, these data show that encapsulated INS-1E cells stably expressing a genetically encoded calcium sensor can be successfully implanted in vivo, and therefore serve as biosensing element or in vivo model to longitudinally monitor the function of pancreatic beta-cells.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (36)
Beta cell
Beta cells (β-cells) are a type of cell found in pancreatic islets that synthesize and secrete insulin and amylin. Beta cells make up 50–70% of the cells in human islets. In patients with Type 1 diabetes, beta-cell mass and function are diminished, leading to insufficient insulin secretion and hyperglycemia. The primary function of a beta cell is to produce and release insulin and amylin. Both are hormones which reduce blood glucose levels by different mechanisms.
Insulin
Insulin (ˈɪn.sjʊ.lɪn, from Latin insula, 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the INS gene. It is considered to be the main anabolic hormone of the body. It regulates the metabolism of carbohydrates, fats and protein by promoting the absorption of glucose from the blood into liver, fat and skeletal muscle cells. In these tissues the absorbed glucose is converted into either glycogen via glycogenesis or fats (triglycerides) via lipogenesis, or, in the case of the liver, into both.
T cell
T cells are one of the important types of white blood cells of the immune system and play a central role in the adaptive immune response. T cells can be distinguished from other lymphocytes by the presence of a T-cell receptor (TCR) on their cell surface. T cells are born from hematopoietic stem cells, found in the bone marrow. Developing T cells then migrate to the thymus gland to develop (or mature). T cells derive their name from the thymus. After migration to the thymus, the precursor cells mature into several distinct types of T cells.
Show more
Related publications (55)

Multipotent mesenchymal stromal cells derived from porcine exocrine pancreas improve insulin secretion from juvenile porcine islet cell clusters.

Sandrine Gerber, Luca Szabó, Léo Bühler

Neonatal and juvenile porcine islet cell clusters (ICC) present an unlimited source for islet xenotransplantation to treat type 1 diabetes patients. We isolated ICC from pancreata of 14 days old juvenile piglets and characterized their maturation by immuno ...
2021

Method Development towards Orthogonal Electrophile Delivery

Lingxi Wang

Redox signaling events mediated by reactive electrophilic species (RES) are key players in several cellular processes. However, the studies on RES have been challenging due to their high reactivity towards numerous nucleophilic groups present in the cells ...
EPFL2021

Targeting Mitochondrial Calcium Uptake with the Natural Flavonol Kaempferol, to Promote Metabolism/Secretion Coupling in Pancreatic beta-cells

Umberto De Marchi, Guillaume Jacot

Pancreatic beta-cells secrete insulin to lower blood glucose, following a meal. Maintenance of beta-cell function is essential to preventing type 2 diabetes. In pancreatic beta-cells, mitochondrial matrix calcium is an activating signal for insulin secreti ...
2020
Show more
Related MOOCs (22)
Introduction à l'immunologie (part 1)
Ce cours décrit les mécanismes fondamentaux du système immunitaire pour mieux comprendre les bases immunologiques dela vaccination, de la transplantation, de l’immunothérapie, de l'allergie et des mal
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.