Publication

Growth and nonlinear response of driven water bells

John Martin Kolinski
2017
Journal paper
Abstract

A water bell forms when a fluid jet impacts upon a target and separates into a two-dimensional sheet. Depending on the angle of separation from the target, the sheet can curve into a variety of different geometries. We show analytically that harmonic perturbations of water bells have linear wave solutions with geometry-dependent growth. We test the predictions of this model experimentally with a custom target system, and observe growth in agreement with the model below a critical forcing amplitude. Once the critical forcing amplitude is exceeded, a nonlinear transcritical bifurcation occurs; the response amplitude increases linearly with increasing forcing amplitude, albeit with a fundamentally different spatial form, and distinct nodes appear in the amplitude envelope.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.