Publication

Heat Pump driven by a Small-Scale Oil-Free Turbocompressor – System Design and Simulation

Abstract

Small-scale oil-free turbocompressors driven by high-speed electric motors and supported on refrigerant vapor bearings represent a promising technology to increase the performance of domestic heat pumps. Gas bearings enable high rotational speeds with low mechanical losses. Furthermore, turbocompressors can reach high compression efficiencies and offer a compact and lightweight design. This paper evaluates the performance of a heat pump using a small-scale radial turbocompressor rotating on gas bearings. The turbocompressor has been optimized for R134a and achieves pressure ratios ion the order of 1.5 to 3.5 at rotational speeds of 160 to 280 krpm with isentropic efficiencies of up to 75%. The impeller diameter is 15.2 mm. A system model of the heat pump has been programmed in the Engineering Equation Solver (EES) software. The model uses effectiveness-NTU models for the heat exchangers and polynomial fit approximations for the non-dimensional compressor map data. The heat pump produces 4.0 kW of 30°C water from 10°C ground heat with a predicted COP of 8.1 and 53.4% 2nd law efficiency. Simulation results, the design of the turbocompressor impeller, as well as the layout of the experimental setup are presented. First experimental measurement results will be expected in the beginning of 2017. The system serves as a proof of concept before stepping forward to a two-stage heat pump cycle with two turbocompressors reaching heat sink temperatures of 55 to 65°C.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.