Publication

Cloaking an arbitrary object via anomalous localized resonance: the cloak is independent of the object

Hoài-Minh Nguyên
2017
Journal paper
Abstract

n this paper, we present various schemes of cloaking an arbitrary object via anomalous localized resonance and provide their analysis in two and three dimensions. This is a way to cloak an object using negative index materials in which the cloaking device is independent of the object. As a result, we show that in the two dimensional quasi-static regime an annular plasmonic structure of coefficient -1 cloaks small but finite size objects nearby. We also discuss its connections with superlensing and cloaking using complementary media. In particular, we confirm the possibility that a lens can act like a cloak and conversely. This possibility was raised about a decade ago in the literature.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (15)
Metamaterial
A metamaterial (from the Greek word μετά meta, meaning "beyond" or "after", and the Latin word materia, meaning "matter" or "material") is any material engineered to have a property that is rarely observed in naturally occurring materials. They are made from assemblies of multiple elements fashioned from composite materials such as metals and plastics. These materials are usually arranged in repeating patterns, at scales that are smaller than the wavelengths of the phenomena they influence.
Negative-index metamaterial
Negative-index metamaterial or negative-index material (NIM) is a metamaterial whose refractive index for an electromagnetic wave has a negative value over some frequency range. NIMs are constructed of periodic basic parts called unit cells, which are usually significantly smaller than the wavelength of the externally applied electromagnetic radiation. The unit cells of the first experimentally investigated NIMs were constructed from circuit board material, or in other words, wires and dielectrics.
Negative refraction
Negative refraction is the electromagnetic phenomenon where light rays become refracted at an interface that is opposite to their more commonly observed positive refractive properties. Negative refraction can be obtained by using a metamaterial which has been designed to achieve a negative value for (electric) permittivity (ε) and (magnetic) permeability (μ); in such cases the material can be assigned a negative refractive index. Such materials are sometimes called "double negative" materials.
Show more
Related publications (37)

Effect of mechanical nonlinearity on the electromagnetic response of a microwave tunable metamaterial

Romain Christophe Rémy Fleury, Bakhtiyar Orazbayev, Rayehe Karimi Mahabadi, Taha Goudarzi

Tunable metamaterials functionalities change in response to external stimuli. Mechanical deformation is known to be an efficient approach to tune the electromagnetic response of a deformable metamaterial. However, in the case of large mechanical deformatio ...
IOP Publishing Ltd2022

Cloaking property of a plasmonic structure in doubly complementary media and three-sphere inequalities with partial data

Hoài-Minh Nguyên

We investigate cloaking property of negative-index metamaterials in the time-harmonic electromagnetic setting for the so-called doubly complementary media. These are media consisting of negative-index metamaterials in a shell (plasmonic structure) and posi ...
2020

Chiral Metamaterials for a Robust Waveguiding Scheme

Romain Christophe Rémy Fleury, Bakhtiyar Orazbayev, Nadège Sihame Kaïna

Recent advances in the field of metamaterials have shown that waves can be efficiently manipulated at the subwavelength scale through the interactions with an ensemble of resonant inclusions, opening new horizons in overcoming the size limits of devices wh ...
2019
Show more
Related MOOCs (1)
The Radio Sky I: Science and Observations
Be captivated by the exotic objects that populate the Radio Sky and gain a solid understanding of their physics and the fundamental techniques we use to observe them.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.