Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The link between sub-bandgap states and optoelectronic properties is investigated for amorphous zinc tin oxide (a-ZTO) thin films deposited by RF sputtering. a-ZTO samples were annealed up to 500 °C in oxidizing, neutral, and reducing atmospheres before characterizing their structural and optoelectronic properties by photothermal deflection spectroscopy, near-infrared-visible UV spectrophotometry, Hall effect, Rutherford backscattering, hydrogen forward scattering and transmission electron microscopy. By combining the experimental results with density functional theory calculations, oxygen deficiencies and resulting metal atoms clusters are identified as the source of subgap states, some of which act as electron donors but also as free electron scattering centers. The role of hydrogen on the optoelectronic properties is also discussed. Based on this detailed understanding of the different point defects present in a-ZTO, their impact on optoelectronic properties, and how they can be suppressed by postdeposition annealing treatments, an amorphous indium-free transparent conductive oxide,with a high thermal stability and an electron mobility up to 35 cm2 V−1 s−1, is demonstrated by defect passivation
Monica Morales Masis, Angela Nicole Fioretti
Duncan Alexander, Bernat Mundet, Jonathan Spring, Jean-Marc Triscone
Sophia Haussener, Yannick Kenneth Gaudy