Publication

Evolution of the Fermi surface of BiTeCl with pressure

Helmuth Berger
2017
Journal paper
Abstract

We report measurements of Shubnikov-de Haas oscillations in the giant Rashba semiconductor BiTeCl under applied pressures up to similar to 2.5 GPa. We observe two distinct oscillation frequencies, corresponding to the Rashba-split inner and outer Fermi surfaces. BiTeCl has a conduction band bottom that is split into two sub-bands due to the strong Rashba coupling, resulting in two spin-polarized conduction bands as well as a Dirac point. Our results suggest that the chemical potential lies above this Dirac point, giving rise to two Fermi surfaces. We use a simple two-band model to understand the pressure dependence of our sample parameters. Comparing our results on BiTeCl to previous results on BiTeI, we observe similar trends in both the chemical potential and the Rashba splitting with pressure.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.