Publication

Iron Oxide Photoelectrode with Multidimensional Architecture for Highly Efficient Photoelectrochemical Water Splitting

Jun Ho Yum
2017
Journal paper
Abstract

Nanostructured metal oxide semiconductors have shown outstanding performances in photoelectrochemical (PEC) water splitting, but limitations in light harvesting and charge collection have necessitated further advances in photo-electrode design. Herein, we propose anodized Fe foams (AFFs) with multidimensional nano/micro-architectures as a highly efficient photoelectrode for PEC water splitting. Fe foams fabricated by freeze-casting and sintering were electrochemically anodized and directly used as photoanodes. We verified the superiority of our design concept by achieving an unprecedented photocurrent density in PEC water splitting over 5 mA cm(-2) before the dark current onset, which originated from the large surface area and low electrical resistance of the AFFs. A photocurrent of over 6.8 mA cm(-2) and an accordingly high incident photon-to-current efficiency of over 50% at 400 nm were achieved with incorporation of Co oxygen evolution catalysts. In addition, research opportunities for further advances by structual and compositional modifications are discussed, which can resolve the low fill factoring behavior and improve the overall performance.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.