Publication

EFFECT OF THE BED LOAD GRADATION ON THE MORPHODYNAMICS OF DISCORDANT CONFLUENCES

Abstract

Within the fluvial network, river confluences are particular areas characterized by complex hydrodynamic, morphodynamic and sedimentary processes. These processes have been observed to be governed by parameters such as the discharge ratio, the junction angle, the sediment rates and the bed material. This study analyzes the influence of the sediment gradation on the hydro-morphodynamics of open channel confluences, characterized by a bed discordance between the tributary and main channel. For that purpose, experiments are conducted at two different laboratory confluences in which only the gradation of the supplied sediment mixtures is different. This paper presents the results of two of these experiments with a discharge ratio between the tributary and main channel of Qr = Qt/Qm = 0.15. In one experiment, non-uniform sediment mixtures with a mean diameter of d50 = 0.82 mm are supplied to the main channel and tributary. These mixtures are representative of the sediments found in mountain river confluences such as those of the Upper-Rhone River. In the other experiment, a uniform sediment mixture with the same mean diameter (d50 = 0.82 mm) is supplied both to the tributary and main channel. The latter mixture is rather representative of the bed material found in low-land confluences. At equilibrium conditions, i.e. when the outgoing sediment rate is nearly equal to the incoming, bed and water surface topographies are recorded. These measurements show that with non-uniform sediments, the bed morphology at equilibrium presents a high topographic gradient, with a developed bar and scour hole in the main channel, a marked bed discordance and a steep bed-slope in the tributary. In contrast, with uniform sediments, the bed morphology presents attenuated features compared to those observed with non-uniform sediments. Also, with uniform sediments bedforms are observed throughout the flumes, whereas the non-uniform mixtures favor the bed armor.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Sediment transport
Sediment transport is the movement of solid particles (sediment), typically due to a combination of gravity acting on the sediment, and the movement of the fluid in which the sediment is entrained. Sediment transport occurs in natural systems where the particles are clastic rocks (sand, gravel, boulders, etc.), mud, or clay; the fluid is air, water, or ice; and the force of gravity acts to move the particles along the sloping surface on which they are resting.
Sedimentary rock
Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particles to settle in place. The particles that form a sedimentary rock are called sediment, and may be composed of geological detritus (minerals) or biological detritus (organic matter). The geological detritus originated from weathering and erosion of existing rocks, or from the solidification of molten lava blobs erupted by volcanoes.
Marine sediment
Marine sediment, or ocean sediment, or seafloor sediment, are deposits of insoluble particles that have accumulated on the seafloor. These particles have their origins in soil and rocks and have been transported from the land to the sea, mainly by rivers but also by dust carried by wind and by the flow of glaciers into the sea. Additional deposits come from marine organisms and chemical precipitation in seawater, as well as from underwater volcanoes and meteorite debris.
Show more
Related publications (45)

The clogging of riverbeds: A review of the physical processes

Giovanni De Cesare, Romain Maxime Dubuis

Fine sediment represents an important part of the solid flux of rivers. Due to the size of these particles, they are often transported as suspended load. They gradually fill the pores of the substrate forming the hyporheic zone or cover the substrate by se ...
2023

Dynamics of Dual-Mode Bedload Transport With Three-Dimensional Alternate Bars Migration in Subcritical Flow: Experiments and Model Analysis

Mehrdad Kiani Oshtorjani, Zhipeng Li, Yong Zhang

Bedload transport often exhibits dual-mode behavior due to interactions of spatiotemporal controlling factors with the migrating three-dimensional bedforms (characterized by the fully developed patterns in the bed, such as alternate bars, pools, and cluste ...
AMER GEOPHYSICAL UNION2023

Experimental Study on Bedload Transport and Bedforms: Behaviour and Interplay in Steep Turbulent Streams

Ivan Pascal

In mountain regions, steep streams play an important role in water and sediment connectivity. In these highly dynamic systems, water flow features, sediment fluxes and stream morphologies are tightly interlinked over a broad range of temporal and spatial s ...
EPFL2022
Show more
Related MOOCs (2)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Fluid Mechanics
Ce cours de base est composé des sept premiers modules communs à deux cours bachelor, donnés à l’EPFL en génie mécanique et génie civil.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.