Publication

Delta Power Is Higher and More Symmetrical in Ischemic Stroke Patients with Cortical Involvement

Abstract

A brain injury resulting from unilateral stroke critically alters brain functionality and the complex balance within the cortical activity. Such modifications may critically depend on lesion location and cortical involvement. Indeed, recent findings pointed out the necessity of applying a stratification based on lesion location when investigating interhemispheric balance in stroke. Here, we tested whether cortical involvement could imply differences in band-specific activity and brain symmetry in post stroke patients with cortico-subcortical and subcortical strokes. We explored brain activity related to lesion location through EEG power analysis and quantitative Electroencephalography (qEEG) measures. Thirty stroke patients in the subacute phase and 10 neurologically intact age-matched right-handed subjects were enrolled. Stroke patients were equally subdivided in two groups based on lesion location: cortico-subcortical (CS, mean age +/- SD: 72.21 +/- 10.97 years; time since stroke +/- SD: 31.14 +/- 11.73 days) and subcortical (S, mean age +/- SD: 68.92 +/- 10.001 years; time since stroke +/- SD: 26.93 +/- 13.08 days) group. We assessed patients' neurological status by means of National Institutes of Health Stroke Scale (NIHSS). High density EEG at rest was recorded and power spectral analysis in Delta (1-4 Hz) and Alpha (8-14 Hz) bands was performed. qEEG metrics as pairwise derived Brain Symmetry Index (pdBSI) and Delta/Alpha Ratio (DAR) were computed and correlated with NIHSS score. S showed a lower Delta power in the Unaffected Hemisphere (UH) compared to Affected Hemisphere (AH; z = -1.98, p < 0.05) and a higher Alpha power compared to CS (z = -2.18, p < 0.05). pdBSI was negatively correlated with NIHSS (R = -0.59, p < 0.05). CS showed a higher value and symmetrical distribution of Delta band activity (z = -2.37, p < 0.05), confirmed also by a higher DAR value compared to S (z = -2.48, p < 0.05). Patients with cortico-subcortical and subcortical lesions show different brain symmetry in the subacute phase. Interestingly, in subcortical stroke patient brain activity is related with the clinical function. qEEG measures can be explicative of brain activity related to lesion location and they could allow precise definition of diagnostic-therapeutic algorithms in stroke patients.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Stroke
A stroke is a medical condition in which poor blood flow to the brain causes cell death. There are two main types of stroke: ischemic, due to lack of blood flow, and hemorrhagic, due to bleeding. Both cause parts of the brain to stop functioning properly. Signs and symptoms of a stroke may include an inability to move or feel on one side of the body, problems understanding or speaking, dizziness, or loss of vision to one side. Signs and symptoms often appear soon after the stroke has occurred.
Electroencephalography
Electroencephalography (EEG) is a method to record an electrogram of the spontaneous electrical activity of the brain. The biosignals detected by EEG have been shown to represent the postsynaptic potentials of pyramidal neurons in the neocortex and allocortex. It is typically non-invasive, with the EEG electrodes placed along the scalp (commonly called "scalp EEG") using the International 10–20 system, or variations of it. Electrocorticography, involving surgical placement of electrodes, is sometimes called "intracranial EEG".
Lacunar stroke
Lacunar stroke or lacunar cerebral infarct (LACI) is the most common type of ischemic stroke, resulting from the occlusion of small penetrating arteries that provide blood to the brain's deep structures. Patients who present with symptoms of a lacunar stroke, but who have not yet had diagnostic imaging performed, may be described as having lacunar stroke syndrome (LACS). Much of the current knowledge of lacunar strokes comes from C. Miller Fisher's cadaver dissections of post-mortem stroke patients.
Show more
Related publications (63)

Unraveling behavior and cortical signals to guide the development of soft neuroprostheses for auditory restoration and spreading depolarization

Emilie Cornelia Maria Revol

Neuroprostheses have been used clinically for decades, to help restore or preserve brain functions, when pharmaceutical treatments are inefficient. Although great progress in the field has been made over the years to interface with the nervous system, surf ...
EPFL2024

A comprehensive stroke risk assessment by combining atrial computational fluid dynamics simulations and functional patient data

Alfio Quarteroni

Stroke, a major global health concern often rooted in cardiac dynamics, demands precise risk evaluation for targeted intervention. Current risk models, like the CHA 2 DS 2 -VASc \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepa ...
Nature Portfolio2024

Brain-controlled spinal cord stimulation to restore mobility after spinal cord injury.

Carmina Andrea Galvez Solano

Spinal Cord Injury (SCI) affects almost 500,000 people every year, causing complete paralysis of both legs in severe cases, with no current treatment perspective. However, new neuroengineering technologies, such as the Brain Spine Interface (BSI), have eme ...
EPFL2023
Show more
Related MOOCs (24)
Selected chapters form winterschool on multi-scale brain
Understanding the brain requires an integrated understan­ding of different scales of organisation of the brain. This Massive Open Online Course (MOOC) will take the you through the latest data, models
Selected chapters form winterschool on multi-scale brain
Understanding the brain requires an integrated understan­ding of different scales of organisation of the brain. This Massive Open Online Course (MOOC) will take the you through the latest data, models
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.