Publication

Dictionary Learning Based on Sparse Distribution Tomography

Michaël Unser, Pedram Pad
2017
Article de conférence
Résumé

We propose a new statistical dictionary learning algorithm for sparse signals that is based on an α-stable innovation model. The parameters of the underlying model—that is, the atoms of the dictionary, the sparsity index α and the dispersion of the transform-domain coefficients—are recovered using a new type of probability distribution tomography. Specifically, we drive our estimator with a series of random projections of the data, which results in an efficient algorithm. Moreover, since the projections are achieved using linear combinations, we can invoke the generalized central limit theorem to justify the use of our method for sparse signals that are not necessarily α-stable. We evaluate our algorithm by performing two types of experiments: image in-painting and image denoising. In both cases, we find that our approach is competitive with state-of-the-art dictionary learning techniques. Beyond the algorithm itself, two aspects of this study are interesting in their own right. The first is our statistical formulation of the problem, which unifies the topics of dictionary learning and independent component analysis. The second is a generalization of a classical theorem about isometries of pℓ _{ p } -norms that constitutes the foundation of our approach.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.