Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Objective: This study aimed to compare subchondral bone mineral density (sBMD) between non-radiographic osteoarthritic (OA) and medial femorotibial OA knees, using computed tomography (CT). Design: CT exams from 16 non-radiographic OA (KL grade < 2) and 16 severe medial OA (KL grade >= 3) knees (average age of 61.7 +/- 3 and 62.2 +/- 5 years old respectively, 50% male in each group), were retrospectively analyzed. CT exams were segmented and 3D maps of sBMD based on the CT number in the most superficial 3 mm of femoral and tibial subchondral bone were computed. Average sBMD and medial-to-lateral sBMD ratios were calculated for total load-bearing regions and for sub-regions of interest in the femur and tibia. Results: The analysis of total load-bearing regions did not reveal any significant difference between groups, except for the lateral tibia, where OA knees had lower sBMD. Sub-regional analysis unveiled differences with some sub-regions of the femur and tibia presenting significantly lower (in the lateral compartment) or higher (in the medial compartment) sBMD in OA knees compared to non-OA knees. The M/L sBMD ratios were significantly higher for OA knees compared to non-OA knees for all regions and sub-regions, except for the internal sub-regions. Conclusions: sBMD locally differs between non-OA and OA knees, in agreement with prior knowledge on biomechanics. CT proved to be a valuable tool for 3D analysis of femoral and tibial sBMD, which can be used in future studies to describe the chronology of sBMD alterations and improve our understanding of the role of subchondral bone in knee OA. (C) 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Julien Favre, Killian Cosendey