Publication

Towards a unified understanding of synaptic plasticity

Giuseppe Chindemi
2018
EPFL thesis
Abstract

Understanding how learning and memory formation work in the brain is a major challenge in neuroscience, with important implications for many other fields, including medicine and industry. It is nowadays widely accepted that synaptic plasticity is the biological foundation of these higher order brain functions. So far, many different plastic behaviors have been intensively studied and characterized, leading to the definition of several forms of plasticity: structural, functional, homeostatic, inhibitory, and many others. Unfortunately, despite all the interest and efforts of the scientific community, a complete and consistent understanding of synaptic plasticity is still lacking. The main goal of this study is to unify data and theories on synaptic plasticity in a comprehensive model, suitable for studying learning and memory down to the synapse level. To reach our objective, we identified a minimal set of biological mechanisms responsible for plastic dynamics and integrated them into a single synapse model, relying whenever possible on well accepted sub-models from literature. We designed a data-driven fitting and generalization strategy to parameterize all excitatory-to-excitatory synapses in a large scale reconstruction of neocortical tissue [Markram et al., 2015]. Finally, we tested the effects of functional synaptic plasticity on neural circuits in simulations. Our model was able to capture not only the outcome of Spike Timing Dependent Plasticity (STDP) protocols used in the training phase, but also the one of all others available in the same experimental dataset [Markram et al., 1997b]. Moreover, it correctly reproduced results on distance-dependent synaptic plasticity [Sjöström and Häusser, 2006], even though this dataset was never used during fitting. In network simulations, we observed the emergence of a self-regulatory homeostatic mechanism, preventing runaway excitation. Furthermore, we noticed the strengthening of connections between neurons that are similarly innervated, as previously shown in vitro [Perin et al., 2011].

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (35)
Synaptic plasticity
In neuroscience, synaptic plasticity is the ability of synapses to strengthen or weaken over time, in response to increases or decreases in their activity. Since memories are postulated to be represented by vastly interconnected neural circuits in the brain, synaptic plasticity is one of the important neurochemical foundations of learning and memory (see Hebbian theory). Plastic change often results from the alteration of the number of neurotransmitter receptors located on a synapse.
Homeostatic plasticity
In neuroscience, homeostatic plasticity refers to the capacity of neurons to regulate their own excitability relative to network activity. The term homeostatic plasticity derives from two opposing concepts: 'homeostatic' (a product of the Greek words for 'same' and 'state' or 'condition') and plasticity (or 'change'), thus homeostatic plasticity means "staying the same through change". Homeostatic synaptic plasticity is a means of maintaining the synaptic basis for learning, respiration, and locomotion, in contrast to the Hebbian plasticity associated with learning and memory.
Chemical synapse
Chemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous system. They are crucial to the biological computations that underlie perception and thought. They allow the nervous system to connect to and control other systems of the body. At a chemical synapse, one neuron releases neurotransmitter molecules into a small space (the synaptic cleft) that is adjacent to another neuron.
Show more
Related publications (55)

Principles of Network Plasticity in Neocortical Microcircuits

András Ecker

Synaptic plasticity underlies our ability to learn and adapt to the constantly changing environment. The phenomenon of synapses changing their efficacy in an activity-dependent manner is often studied in small groups of neurons in vitro or indirectly throu ...
EPFL2023

Engram cell connectivity as a mechanism for information encoding and memory function

Maurizio Ferdinando Pezzoli

Information derived from experiences is incorporated into the brain as changes to ensembles of cells, termed engram cells, which allow memory storage and recall. The mechanism by which those changes hold specific information is unclear. Here, we test the h ...
Cambridge2023

Long-term plasticity induces sparse and specific synaptic changes in a biophysically detailed cortical model

Eilif Benjamin Muller, Michael Reimann, James Gonzalo King, Marwan Muhammad Ahmed Abdellah, Pramod Shivaji Kumbhar, András Ecker, Sirio Bolaños Puchet, James Bryden Isbister, Daniela Egas Santander, Jorge Blanco Alonso, Giuseppe Chindemi, Ioannis Magkanaris

Synaptic plasticity underlies the brain’s ability to learn and adapt. This process is often studied in small groups of neurons in vitro or indirectly through its effects on behavior in vivo. Due to the limitations of available experimental techniques, inve ...
2023
Show more
Related MOOCs (31)
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Show more