Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
This work focuses on the development of a facile and scalable wet milling method followed by heat treatment to prepare fluorinated and/or N-doped TiO2 nanopowders with improved photocatalytic properties under visible light. The structural and electronic properties of doped particles were investigated by various techniques. The successful doping of TiO2 was confirmed by X-ray photoelectron spectroscopy (XPS), and the atoms appeared to be mainly located in interstitial positions for N whereas the fluorination is located at the TiO2 surface. The formation of intragap states was found to be responsible for the band gap narrowing leading to the faster bacterial inactivation dynamics observed for the fluorinated and N doped TiO2 particles compared to N-doped TiO2. This was attributed to a synergistic effect. The results presented in this study confirmed the suitability of the preparation approach for the large-scale production of cost-efficient doped TiO2 for effective bacterial inactivation.
, , , , , ,
Christian Alexander Stephan Dette