A considerable portion of government health-care spending is allocated to the continuous monitoring of patients suffering from cardiovascular diseases, particularly myocardial infarction (MI). Wearable devices present a cost-effective means of monitoring patients’ vital signs in ambulatory settings. A major challenge is to design such ultra-low energy devices for long-term patient monitoring. In this paper, we present a real-time event-driven classification technique based on the random forest classification scheme, which uses a confidence-related decision-making process. The main goal of this technique is to maintain a high classification accuracy while reducing the complexity of the classification algorithm. We validate our approach on a well-established and complete MI database (Physiobank, PTB Diagnostic ECG database [1]). Our experimental evaluation demonstrates that our real-time classification scheme outperforms the existing approaches in terms of energy consumption and battery lifetime by a factor of 2.60, with no classification quality loss.
David Atienza Alonso, Amir Aminifar, Tomas Teijeiro Campo, Alireza Amirshahi, Farnaz Forooghifar, Saleh Baghersalimi
Martin Jaggi, Vinitra Swamy, Jibril Albachir Frej, Julian Thomas Blackwell
Jean-Paul Richard Kneib, Emma Elizabeth Tolley, Tianyue Chen, Michele Bianco