Publication

Assessing visibility in multi-scale urban planning: A contribution to a method enhancing social acceptability of solar energy in cities

Abstract

Urban areas are facing a growing deployment of solar photovoltaic and thermal technologies on building envelopes, both on roofs and on façades. An effective solar energy planning process considers social acceptance, in relation to the landscape alteration induced by the solar modules. “Visual impact” is often considered as a major component of social acceptance but comprehensive visibility assessment models are lacking at the scale of the city. This paper presents a scale-dependent methodology to assess the visibility of building envelope surfaces exposed to solar radiation, which could host solar modules, in urban areas. A match between annual solar radiation, visibility and socio-cultural sensitivity of the built environment are proposed in a multi-criteria decision framework. Results are illustrated for the city of Geneva (Switzerland), as a case study: a partial overlap between highly sensitive urban areas and high visual interest is identified at the broad, strategic planning scale. In a second more detailed phase, a frequency breakdown of buildings is provided, according to the (non-) visible share of useful roof area for solar energy production. Less visible roofs are more likely to be situated in courtyards, far from the streets, in deep urban canyons or on low-pitched roofs. The outcomes indicate that stakeholders can reasonably expect to harvest a serious amount of solar energy by means of building integrated solar systems without crucially affecting public perception. In Geneva, more than 50 m2/building of non-visible roof surface receiving sufficient solar radiation for an economically viable solar refurbishment is available over half of the buildings. This method is valuable for large districts or cities (i) to spot more/less visible building sets and to estimate adapted precinct refurbishment strategies; (ii) to compare visibility on a common conventional basis and to detect zones deserving further investigations at the finer scale.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Building-integrated photovoltaics
Building-integrated photovoltaics (BIPV) are photovoltaic materials that are used to replace conventional building materials in parts of the building envelope such as the roof, skylights, or facades. They are increasingly being incorporated into the construction of new buildings as a principal or ancillary source of electrical power, although existing buildings may be retrofitted with similar technology.
Solar energy
Solar energy is radiant light and heat from the Sun that is harnessed using a range of technologies such as solar power to generate electricity, solar thermal energy (including solar water heating), and solar architecture. It is an essential source of renewable energy, and its technologies are broadly characterized as either passive solar or active solar depending on how they capture and distribute solar energy or convert it into solar power.
Solar cell
A solar cell, or photovoltaic cell, is an electronic device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical phenomenon. It is a form of photoelectric cell, defined as a device whose electrical characteristics, such as current, voltage, or resistance, vary when exposed to light. Individual solar cell devices are often the electrical building blocks of photovoltaic modules, known colloquially as solar panels.
Show more
Related publications (86)

Correlating long-term performance and aging behaviour of building integrated PV modules

Christophe Ballif, Alessandro Francesco Aldo Virtuani, Ebrar Özkalay

Because building-integrated photovoltaic (BIPV) modules are fully integrated into a building envelope, the back of the module can be exposed to little or no ventilation, resulting in increased operating temperatures. As the temperature increases, the perfo ...
Elsevier Science Sa2024

Photoelectrochemical Cell Engineering for Solar Energy Conversion

Dan Zhang

Solar energy is the most abundant energy source, harnessing solar energy holds the solution to the challenge of increasing global energy demand and reducing our dependence on fossil fuels. Photovoltaics which directly convert solar energy into electricity ...
EPFL2023

Transparent structured conductive coating for applications in smart windows.

Jérémy Jacques Antonin Fleury

Solar radiation reaching the surface of the earth for a period of one hour contains more energy than that consumed by mankind over an entire year. Some of this solar energy is already collected by photovoltaic cells to cover the electricity needs of buildi ...
EPFL2023
Show more
Related MOOCs (2)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.