Multi-objective optimization tools are becoming increasingly popu-lar in mechanical engineering and allow decision-makers to better understand the inevitable trade-offs. Mechanical design problems can however combine properties that make the use of optimization more complex: (i) expensive cost functions; (ii) discrete or step-like behavior of the cost functions; and (iii) non-linear constraints. The latter in particular has a great impact on the convergence and the diversity of the obtained Pareto front. In this paper, we present five bi-objective mechanical design optimization problems with various levels of constraint complexity. They are used to rigorously benchmark two common constraint handling strategies (constrained-dominance and penalty function). The results suggest that both strategies have similar performance, and that as constraints become more intricate, convergence to the best-known Pareto front is not guaranteed. Indeed, analyzing the evolution of the hypervolume along generations reveals that the optimizer can get trapped in local optima. A detailed analysis of the obtained Pareto fronts for the proposed problems allows us to qualify the effects of the different constraints.
Pascal Frossard, Roberto Gerson De Albuquerque Azevedo, Chaofan He
Michel Bierlaire, Timothy Michael Hillel, Negar Rezvany