Publication

Electron-Affinity-Triggered Variations on the Optical and Electrical Properties of Dye Molecules Enabling Highly Efficient Dye-Sensitized Solar Cells

Abstract

The synthesis, characterization, and photovoltaic performance of a series of indacenodithiophene (IDT)-based D--A organic dyes with varying electron-accepting units is presented. By control of the electron affinity, perfectly matching energy levels were achieved with a copper(I/II)-based redox electrolyte, reaching a high open-circuit voltage (>1.1V) while harvesting a large fraction of solar photons at the same time. Besides achieving high power conversion efficiencies (PCEs) for dye-sensitized solar cells (DSCs), that is, 11.2% under standard AM1.5G sunlight, and 28.4% under a 1000 lux fluorescent light tube, this work provides a possible method for the design and fabrication of low-cost highly efficient DSCs.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.