Publication

Target Detection with Deep Learning in Polarimetric Imaging

Abstract

Polarimetric imaging techniques demonstrate enhanced capabilities in advanced object detection tasks with their capability to discriminate man-made objects from natural background surfaces. While spectral signatures carry information only about material properties, the polarization state of an optical field contains information related to surface features of objects, such as, shape and roughness. With these additional benefits, polarimetric imaging reveal physical properties operable for advanced object detection tasks which are not possible to acquire by using conventional imaging. In this work, the primary objective is to utilize the state-of-the-art deep learning models designed for object detection tasks using images obtained by polarimetric systems. In order to train deep learning models, it is necessary to have a sufficiently large dataset consisting of polarimetric images with various classes of objects in them. We started by constructing such dataset with adequate number of visual and infrared (SWIR) polarimetric images obtained using polarimetric imaging systems and masking relevant parts for object detection models. We managed to achieve a high performance score while detecting vehicles with metallic surfaces using polarimetric imaging. Even with limited number of training samples, polarimetric imaging demonstrated superior performance comparing to models trained using conventional imaging techniques. We observed that using models trained with both polarimetric and conventional imaging techniques in parallel gives the best performance score since these models were able to compensate for each other's lacking points. In the subsequent stages, we plan to expand the study to the application of spiking neural network (SNN) architectures for implementing the detection/classification tasks.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Object detection
Object detection is a computer technology related to computer vision and that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. Well-researched domains of object detection include face detection and pedestrian detection. Object detection has applications in many areas of computer vision, including and video surveillance. It is widely used in computer vision tasks such as , vehicle counting, activity recognition, face detection, face recognition, video object co-segmentation.
Deep learning
Deep learning is part of a broader family of machine learning methods, which is based on artificial neural networks with representation learning. The adjective "deep" in deep learning refers to the use of multiple layers in the network. Methods used can be either supervised, semi-supervised or unsupervised.
Collision detection
Collision detection is the computational problem of detecting the intersection of two or more objects. Collision detection is a classic issue of computational geometry and has applications in various computing fields, primarily in computer graphics, computer games, computer simulations, robotics and computational physics. Collision detection algorithms can be divided into operating on 2D and 3D objects. In physical simulation, experiments such as playing billiards are conducted.
Show more
Related publications (54)

Performing and Detecting Backdoor Attacks on Face Recognition Algorithms

Alexander Carl Unnervik

The field of biometrics, and especially face recognition, has seen a wide-spread adoption the last few years, from access control on personal devices such as phones and laptops, to automated border controls such as in airports. The stakes are increasingly ...
EPFL2024

Deep learning approach for identification of H II regions during reionization in 21-cm observations - II. Foreground contamination

Jean-Paul Richard Kneib, Emma Elizabeth Tolley, Tianyue Chen, Michele Bianco

The upcoming Square Kilometre Array Observatory will produce images of neutral hydrogen distribution during the epoch of reionization by observing the corresponding 21-cm signal. However, the 21-cm signal will be subject to instrumental limitations such as ...
Oxford Univ Press2024

Coronal jets identification using Deep Learning as Image and Video Object Detection

This report presents a study on the development and application of a Region-based Convolutional Neural Network, Faster RCNN and a more complex one, TransVOD, to locate solar coronal jets using data from the Solar Dynamic Observatory (SDO). The study focus ...
2024
Show more
Related MOOCs (31)
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.