Publication

Neuropharmacology of the mesolimbic system and associated circuits on social hierarchies

Abstract

Most socially living species are organized hierarchically, primarily based on individual differences in social dominance. Dominant individuals typically gain privileged access to important resources, such as food, mating partners and territories, whereas submissive conspecifics are often devoid of such benefits. The benefits associated with a high social status provide a strong incentive to become dominant. Importantly, motivational- and reward-related processes are regulated, to a large extent, by the mesolimbic system. Consequently, several studies point to a key role for the mesolimbic system in social hierarchy formation. This review summarizes the growing body of literature that implicates the mesolimbic system, and associated neural circuits, on social hierarchies. In particular, we discuss the neurochemical and pharmacological studies that have highlighted the contributions of the mesolimbic system and associated circuits including dopamine signaling through the D1 or D2 receptors, GABAergic neurotransmission, the androgen receptor system, and mitochondria and bioenergetics. Given that low social status has been linked to the emergence of anxiety- and depressive-like disorders, a greater understanding of the neurochemistry underlying social dominance could be of tremendous benefit for the development of pharmacological treatments to dysfunctions in social behaviors.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (38)
Social stratification
Social stratification refers to a society's categorization of its people into groups based on socioeconomic factors like wealth, income, race, education, ethnicity, gender, occupation, social status, or derived power (social and political). As such, stratification is the relative social position of persons within a social group, category, geographic region, or social unit. In modern Western societies, social stratification is typically defined in terms of three social classes: the upper class, the middle class, and the lower class; in turn, each class can be subdivided into the upper-stratum, the middle-stratum, and the lower stratum.
Reward system
The reward system (the mesocorticolimbic circuit) is a group of neural structures responsible for incentive salience (i.e., "wanting"; desire or craving for a reward and motivation), associative learning (primarily positive reinforcement and classical conditioning), and positively-valenced emotions, particularly ones involving pleasure as a core component (e.g., joy, euphoria and ecstasy). Reward is the attractive and motivational property of a stimulus that induces appetitive behavior, also known as approach behavior, and consummatory behavior.
Mesolimbic pathway
The mesolimbic pathway, sometimes referred to as the reward pathway, is a dopaminergic pathway in the brain. The pathway connects the ventral tegmental area in the midbrain to the ventral striatum of the basal ganglia in the forebrain. The ventral striatum includes the nucleus accumbens and the olfactory tubercle. The release of dopamine from the mesolimbic pathway into the nucleus accumbens regulates incentive salience (e.g.
Show more
Related publications (35)

Impact of Mitofusin 2 in the Nucleus Accumbens on motivated behavior and underlying neurobiological mechanisms

Alessandro Chioino

The nucleus accumbens (NAc) is part of the ventral striatum and plays a major role in motivation and goal-directed behaviour. Increasing evidence implicates impairments in accumbal function in anxiety and depression, two conditions that are commonly accomp ...
EPFL2024

Unveiling the complexity of learning and decision-making

Wei-Hsiang Lin

Reinforcement learning (RL) is crucial for learning to adapt to new environments. In RL, the prediction error is an important component that compares the expected and actual rewards. Dopamine plays a critical role in encoding these prediction errors. In my ...
EPFL2024

Striatal Dopamine Signals and Reward Learning

Carl Petersen, Sylvain Crochet, Yanqi Liu, Parviz Ghaderi, Mauro Pulin, Anthony Pierre Robert Renard, Christos Sourmpis, Pol Bech Vilaseca, Meriam Malekzadeh, Robin François Virginien Dard

We are constantly bombarded by sensory information and constantly making decisions on how to act. In order to optimally adapt behavior, we must judge which sequences of sensory inputs and actions lead to successful outcomes in specific circumstances. Neuro ...
Oxford2023
Show more
Related MOOCs (14)
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.