Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
When transported in confined geometries rigid fibers show interesting transport dynamics induced by friction with the top and bottom walls. Fiber flexibility causes an additional coupling between fiber deformation and transport and is expected to lead to more complex dynamics. A first crucial step for their understanding is the characterization of the deformed fiber shape. Here we characterize this shape for a fiber transported in a confined plug flow perpendicular to the flow direction using a combination of microfluidic experiments and numerical simulations. In the experiments, size, initial orientation, and mechanical properties of the fibers are controlled using microfabrication techniques and in situ characterization methods. The numerical simulations use modified Brinkman equations as well as full three-dimensional simulations. We show that the bending of a perpendicular fiber results from the force distribution acting on the elongated object and is proportional to the elasto-viscous number, which compares viscous to elastic forces. We quantitatively characterize the influence of the confinement on the fiber deformation. The precise understanding of the deformation of a flexible fiber in a confined geometry can also be used in future to understand the deformation and transport of more complex deformable particles in confined flows, such as vesicles or red blood cells.
Kamil Sedlák, Davide Uglietti, Christoph Müller
Fabien Sorin, Stella Andréa Françoise Laperrousaz, Hritwick Banerjee, Rémi Andréa La Polla, Andreas Leber, Chaoqun Dong, Syrine Mansour, Xue Wan