Publication

PET-based prognostic survival model after radiotherapy for head and neck cancer

Abstract

PurposeThe aims of this multicentre retrospective study of locally advanced head and neck cancer (LAHNC) treated with definitive radiotherapy were to (1) identify positron emission tomography (PET)-F-18-fluorodeoxyglucose (F-18-FDG) parameters correlated with overall survival (OS) in a training cohort, (2) compute a prognostic model, and (3) externally validate this model in an independent cohort.Materials and methodsA total of 237 consecutive LAHNC patients divided into training (n=127) and validation cohorts (n=110) were retrospectively analysed. The following PET parameters were analysed: SUVMax, metabolic tumour volume (MTV), total lesion glycolysis (TLG), and SUVMean for the primary tumour and lymph nodes using a relative SUVMax threshold or an absolute SUV threshold. Cox analyses were performed on OS in the training cohort. The c-index was used to identify the highly prognostic parameters. A prognostic model was subsequently identified, and a nomogram was generated. The model was externally tested in the validation cohort.ResultsIn univariate analysis, the significant PET parameters for the primary tumour included MTV (relative thresholds from 6 to 83% and absolute thresholds from 1.5 to 6.5) and TLG (relative thresholds from 1 to 82% and absolute thresholds from 0.5 to 4.5). For the lymph nodes, the significant parameters included MTV and TLG regardless of the threshold value. In multivariate analysis, tumour site, p16 status, MTV35% of the primary tumour, and MTV44% of the lymph nodes were independent predictors of OS. Based on these four parameters, a prognostic model was identified with a c-index of 0.72. The corresponding nomogram was generated. This prognostic model was externally validated, achieving a c-index of 0.66.ConclusionsA prognostic model of OS based on primary tumour and lymph node MTV, tumour site, and p16 status was proposed and validated. The corresponding nomogram may be used to tailor individualized treatment.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Positron emission tomography
Positron emission tomography (PET) is a functional imaging technique that uses radioactive substances known as radiotracers to visualize and measure changes in metabolic processes, and in other physiological activities including blood flow, regional chemical composition, and absorption. Different tracers are used for various imaging purposes, depending on the target process within the body. For example, -FDG is commonly used to detect cancer, NaF is widely used for detecting bone formation, and oxygen-15 is sometimes used to measure blood flow.
Fluorodeoxyglucose (18F)
DISPLAYTITLE:Fluorodeoxyglucose (18F) [18F]Fluorodeoxyglucose (INN), or fluorodeoxyglucose F 18 (USAN and USP), also commonly called fluorodeoxyglucose and abbreviated [18F]FDG, 2-[18F]FDG or FDG, is a radiopharmaceutical, specifically a radiotracer, used in the medical imaging modality positron emission tomography (PET). Chemically, it is 2-deoxy-2-[18F]fluoro-D-glucose, a glucose analog, with the positron-emitting radionuclide fluorine-18 substituted for the normal hydroxyl group at the C-2 position in the glucose molecule.
PET-CT
Positron emission tomography–computed tomography (better known as PET-CT or PET/CT) is a nuclear medicine technique which combines, in a single gantry, a positron emission tomography (PET) scanner and an x-ray computed tomography (CT) scanner, to acquire sequential images from both devices in the same session, which are combined into a single superposed () image. Thus, functional imaging obtained by PET, which depicts the spatial distribution of metabolic or biochemical activity in the body can be more precisely aligned or correlated with anatomic imaging obtained by CT scanning.
Show more
Related publications (34)

New insights into rodent brain microstructure and metabolism in hepatic encephalopathy

Jessie Julie Mosso

Type C hepatic encephalopathy (HE) is a severe neuropsychiatric complication of chronic liver disease, for which the prognosis is poor in the absence of liver transplantation. Cirrhosis in type C HE leads to a toxic accumulation of ammonia in the blood, wh ...
EPFL2023

Integrated electronics for time-of-flight positron emission tomography photodetectors

Andrada Alexandra Muntean

Positron emission tomography is a nuclear imaging technique well known for its use in oncology for cancer diagnosis and staging. A PET scanner is a complex machine which comprises photodetectors placed in a ring configuration that detect gamma photons gene ...
EPFL2023

Plasma biomarkers for Alzheimer's disease: a field-test in a memory clinic

Aurélien Lathuilière

Background The key Alzheimer's disease (AD) biomarkers are traditionally measured with techniques/exams that are either expensive (amyloid-positron emission tomography (PET) and tau-PET), invasive (cerebrospinal fluid A beta 42 and p-tau 181), or poorly sp ...
BMJ PUBLISHING GROUP2023
Show more
Related MOOCs (2)
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.