Publication

Decentralized Stochastic Optimization and Gossip Algorithms with Compressed Communication

Abstract

We consider decentralized stochastic optimization with the objective function (e.g. data samples for machine learning task) being distributed over n machines that can only communicate to their neighbors on a fixed communication graph. To reduce the communication bottleneck, the nodes compress (e.g. quantize or sparsify) their model updates. We cover both unbiased and biased compression operators with quality denoted by \omega 0. This is (up to our knowledge) the first gossip algorithm that supports arbitrary compressed messages for \omega > 0 and still exhibits linear convergence. We (iii) show in experiments that both of our algorithms do outperform the respective state-of-the-art baselines and CHOCO-SGD can reduce communication by at least two orders of magnitudes.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.