Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Here, we review the most recent developments in the field of 2-D electronics. We focus first on the synthesis of 2-D materials, discussing the different growth techniques currently available and assessing their strengths and weaknesses. Moreover, we describe a possible roadmap to enable CMOS compatible integration of 2-D materials. We then shift our attention to 2-D devices and circuits and review the state of the art. Among the plethora of device concepts, we look closely at 2-D tunnel FETs (TFETs) and negative-capacitance FETs (NC-FETs) for low-power applications. We also put a particular emphasis on doping-free polarity-controllable systems that use electrostatic doping to eliminate the need for physical or chemical doping. We conclude with an analysis of simulations of scaled devices and discuss the possibilities enabled at circuit level by 2-D electronics.
Jürgen Brugger, Giovanni Boero, Xia Liu, Ana Conde Rubio
, ,