Publication

Contact élastoplastique : équations intégrales accélérées par une approche Fourier

Résumé

Une approche par équations intégrales volumiques du problème de contact élastoplastique périodique est présentée. Elle repose sur la formulation des fonctions de Green nécessaires au calcul des opérateurs intégraux directement dans l’espace de Fourier. Cela permet d’utiliser l’algorithme de la transformée de Fourier rapide pour l’application des opérateurs intégraux, d’éviter le stockage coûteux des fonctions de Green qui peuvent être évaluées à la volée et d’optimiser l’application des opérateurs intégraux dans la direction non transformée via l’exploitation de la structure des fonctions de Green dans l’espace de Fourier. Ces avancées permettent une exploitation plus efficace des ressources de calcul et la simulation du contact élastoplastique de surfaces rugueuses, dont les caractéristiques influencent denombreux phénomènes, tels que le frottement ou l’usure.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.