Publication

Generating Artificial Data for Private Deep Learning

Boi Faltings, Aleksei Triastcyn
2019
Conference paper
Abstract

In this paper, we propose generating artificial data that retain statistical properties of real data as the means of providing privacy for the original dataset. We use generative adversarial networks to draw privacy-preserving artificial data samples and derive an empirical method to assess the risk of information disclosure in a differential-privacy-like way. Our experiments show that we are able to generate labelled data of high quality and use it to successfully train and validate supervised models. Finally, we demonstrate that our approach significantly reduces vulnerability of such models to model inversion attacks.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.