Publication

A null model of the mouse whole-neocortex micro-connectome

Abstract

In connectomics, the study of the network structure of connected neurons, great advances are being made on two different scales: that of macro- and meso-scale connectomics, studying the connectivity between populations of neurons, and that of micro-scale connectomics, studying connectivity between individual neurons. We combine these two complementary views of connectomics to build a first draft statistical model of the micro-connectome of a whole mouse neocortex based on available data on region-to-region connectivity and individual whole-brain axon reconstructions. This process reveals a targeting principle that allows us to predict the innervation logic of individual axons from meso-scale data. The resulting connectome recreates biological trends of targeting on all scales and predicts that an established principle of scale invariant topological organization of connectivity can be extended down to the level of individual neurons. It can serve as a powerful null model and as a substrate for whole-brain simulations.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.