Publication

Event-Triggered Sensing for High-Quality and Low-Power Cardiovascular Monitoring Systems

Abstract

In the context of wearable medical systems, resources are scarce while performance requirements are high. Traditional sampling strategies create large amounts of data, which hinders the device's battery lifetime. However, energy savings are possible when relying on an event-triggered strategy, following the brain example. In this paper, we explore the use of non-Nyquist sampling for cardiovascular monitoring systems, with an in-depth analysis of the performance of a knowledge-based adaptive sampling strategy. By reducing the average sampling rate from 360 Hz down to 13.6 Hz, we can increase the battery lifetime by 4× with a marginal impact on the accuracy of heart-rate analysis.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.