Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
An overarching computational framework unifying several optical theories to describe the temporal evolution of gold nanoparticles (GNPs) during a seeded growth process is presented. To achieve this, we used the inexpensive and widely available optical extinction spectroscopy, to obtain quantitative kinetic data. In situ spectra collected over a wide set of experimental conditions were regressed using the physical model, calculating light extinction by ensembles of GNPs during the growth process. This model provides temporal information on the size, shape, and concentration of the particles and any electromagnetic interactions between them. Consequently, we were able to describe the mechanism of GNP growth and divide the process into distinct genesis periods. We provide explanations for several longstanding mysteries, for example, the phenomena responsible for the purple-greyish hue during the early stages of GNP growth, the complex interactions between nucleation, growth, and aggregation events, and a clear distinction between agglomeration and electromagnetic interactions. The presented theoretical formalism has been developed in a generic fashion so that it can readily be adapted to other nanoparticulate formation scenarios such as the genesis of various metal nanoparticles.
Ardemis Anoush Boghossian, Giulia Tagliabue, Sayyed Hashem Sajjadi, Alessandra Antonucci, Shang-Jung Wu, Theodoros Tsoulos, Amirmostafa Amirjani