Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The fracture behaviour of low-alloy reactor pressure vessel steels with various sulphur and phosphorus contents, different environmentally-assisted cracking (EAC) and temper embrittlement (TE) susceptibilities was evaluated by elastic plastic fracture mechanics tests in air and various simulated light water reactors environments. A moderate but clear reduction of fracture initiation resistance occurred in a) high-sulphur steel with high EAC susceptibility in oxygenated high-temperature water with aggressive occluded crevice environment and preceding EAC growth, and in b) high-phosphorus steel with high TE susceptibility, where the reduction of fracture resistance was most pronounced in hydrogenated high-temperature water.