Publication

Subaquatic slope instabilities: The aftermath of river correction and artificial dumps in Lake Biel (Switzerland)

Abstract

River engineering projects are developing rapidly across the globe, drastically modifying water courses and sediment transfer. Investigation of the impact of engineering works focuses usually on short-term impacts, thus a longer-term perspective is still missing on the effects that such projects have. The 'Jura Water Corrections' - the largest river engineering project ever undertaken in Switzerland - radically modified the hydrological system of Lake Biel in the 19th and 20th Century. The deviation of the Aare River into Lake Biel more than 140 years ago, in 1878, thus represents an ideal case study to investigate the long-term sedimentological impacts of such large-scale river rerouting. Sediment cores, along with new high-resolution bathymetric and seismic reflection datasets were acquired in Lake Biel to document the consequences of the Jura Water Corrections on the sedimentation history of Lake Biel. Numerous subaquatic mass transport structures were detected on all of the slopes of the lake. Notably, a relatively large mass transport complex (0 center dot 86 km(2)) was observed on the eastern shore, along the path of the Aare River intrusion. The large amount of sediment delivered by the Aare River since its deviation into the lake likely caused sediment overloading resulting in subaquatic mass transport. Alternatively, the dumping since 1963 in a subaquatic landfill of material excavated during the second phase of river engineering, when the channels flowing into and out of Lake Biel were widened and deepened, might have triggered the largest mass transport, dated to 1964 or 1965. Additional potential triggers include two nearby small earthquakes in 1964 and 1965 (M-W 3 center dot 9 and 3 center dot 2, respectively). The data for this study indicate that relatively large mass transports have become recurrent in Lake Biel following the deviation of the Aare River, thus modifying hazard frequency for the neighbouring communities and infrastructure.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.