Publication

Stiffness and Strength Estimation of Damaged Unreinforced Masonry Walls Using Crack Pattern

Abstract

After an earthquake, the residual stiffness and strength of structural elements are typically estimated based on a qualitative visual inspection of cracks that is prone to error. In this paper a new approach is proposed to automatically estimate the updated stiffness and strength of damaged unreinforced masonry walls by characterization of crack patterns by a mathematical index. It is shown that structural and textural fractal dimensions of a crack pattern reflect the extent of cracking and the type of cracking or crushing, i.e., whether the cracks pass through joints or whether bricks have been damaged and crushed. Using results of six quasi-static cyclic tests on unreinforced brick masonry walls with different failure modes at various drift ratios, it is shown that the structural and textural fractal dimensions of the crack patterns are an accurate predictor of the stiffness and strength degradation. This procedure seems therefore a promising approach for replacing the traditional assessment methods that are based on visual inspection and engineering judgment by an analytical procedure based on image processing that can eventually be completely automated.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.