Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Macroscopic models of nucleation provide powerful tools for understanding activated phase transition processes. These models do not provide atomistic insights and can thus sometimes lack material-specific descriptions. Here, we provide a comprehensive framework for constructing a continuum picture from an atomistic simulation of homogeneous nucleation. We use this framework to determine the equilibrium shape of the solid nucleus that forms inside bulk liquid for a Lennard-Jones potential. From this shape, we then extract the anisotropy of the solid-liquid interfacial free energy, by performing a reverse Wulff construction in the space of spherical harmonic expansions. We find that the shape of the nucleus is nearly spherical and that its anisotropy can be perfectly described using classical models. Published under license by AIP Publishing.
Athanasios Nenes, Mária Lbadaoui-Darvas, André Welti
Athanasios Nenes, Mária Lbadaoui-Darvas