Publication

Identification of an Optimized Heating and Fast Ion Generation Scheme for the Wendelstein 7-X Stellarator

Abstract

A Doppler shifted resonance minority species ion cyclotron range of frequency (ICRF) scheme for heating neutral beam ions has been identified and optimized for theWendelstein 7-X stellarator. Compared with more conventional methods, the synergetic scheme increases the normalized core collisional power transfer to the background plasma, and induces larger concentrations of energetic ions. Simulations in the intricate 3D magnetic stellarator geometry reveal an energetic distribution function that is only weakly anisotropic, and is thus relevant to fast ion and alpha particle driven Alfv ' en eigenmode experimental preparation. Quasilinear theory and simulations of the Joint European Torus indicate that the excellent confinement properties are due to increased velocity diffusion from ICRF interaction along the magnetic field lines. Agreement is found between SCENIC simulations and Joint European Torus experimental measurements for the total neutron rate and the energy distribution of the fast ions.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (31)
Joint European Torus
The Joint European Torus, or JET, is an operational magnetically confined plasma physics experiment, located at Culham Centre for Fusion Energy in Oxfordshire, UK. Based on a tokamak design, the fusion research facility is a joint European project with a main purpose of opening the way to future nuclear fusion grid energy. At the time of its design JET was larger than any comparable machine. JET was built with the hope of reaching scientific breakeven where the fusion energy gain factor Q =1.0.
Tokamak
A tokamak (ˈtoʊkəmæk; токамáк) is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being developed to produce controlled thermonuclear fusion power. , it was the leading candidate for a practical fusion reactor. Tokamaks were initially conceptualized in the 1950s by Soviet physicists Igor Tamm and Andrei Sakharov, inspired by a letter by Oleg Lavrentiev. The first working tokamak was attributed to the work of Natan Yavlinsky on the T-1 in 1958.
Ion source
An ion source is a device that creates atomic and molecular ions. Ion sources are used to form ions for mass spectrometers, optical emission spectrometers, particle accelerators, ion implanters and ion engines. Electron ionization Electron ionization is widely used in mass spectrometry, particularly for organic molecules. The gas phase reaction producing electron ionization is M{} + e^- -> M^{+\bullet}{} + 2e^- where M is the atom or molecule being ionized, e^- is the electron, and M^{+\bullet} is the resulting ion.
Show more
Related publications (32)

Study of fast-ion-driven toroidal Alfvén eigenmodes impacting on the global confinement in TCV L-mode plasmas

Stefano Coda, Laurent Villard, Stephan Brunner, Justin Richard Ball, Oleg Krutkin, Luke Simons, Umesh Kumar, Baruch Rofman, Jesús Poley Sanjuán, Javier García Hernández, Matteo Vallar, Aylwin Iantchenko, Samuele Mazzi

Following recent observations of unstable Toroidal Alfven Eigenmodes (TAEs) in a counter-current Neutral Beam Injection (NBI) scenario developed in TCV, an in-depth analysis of the impact of such modes on the global confinement and performance is carried o ...
2023

Physics and applications of three-ion ICRF scenarios for fusion research

Henri Weisen, Javier García Hernández, Mikhail Maslov, Samuele Mazzi

This paper summarizes the physical principles behind the novel three-ion scenarios using radio frequency waves in the ion cyclotron range of frequencies (ICRF). We discuss how to transform mode conversion electron heating into a new flexible ICRF technique ...
AMER INST PHYSICS2021

First global simulations of plasma turbulence in a stellarator with an island divertor

Paolo Ricci, Joaquim Loizu Cisquella, António João Caeiro Heitor Coelho

We present the results of 3D, flux-driven, global, two-fluid electrostatic turbulence simulations in a 5-field period stellarator with an island divertor. The numerical simulations are carried out with the GBS code, which solves the two-fluid drift-reduced ...
2021
Show more
Related MOOCs (7)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.