Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The amygdala is a brain area critical for the formation of fear memories. However, the nature of the teaching signal(s) that drive plasticity in the amygdala are still under debate. Here, we use optogenetic methods to investigate the contribution of ventral tegmental area (VTA) dopamine neurons to auditory-cued fear learning in male mice. Using anterograde and retrograde labeling, we found that a sparse and relatively evenly distributed population of VTA neurons projects to the basal amygdala (BA). In vivo optrode recordings in behaving mice showed that many VTA neurons, among them putative dopamine neurons, are excited by footshocks, and acquire a response to auditory stimuli during fear learning. Combined cfos imaging and retrograde labeling in dopamine transporter (DAT) Cre mice revealed that a large majority of BA projectors (>95%) are dopamine neurons, and that BA projectors become activated by the tone-footshock pairing of fear learning protocols. Finally, silencing VTA dopamine neurons, or their axon terminals in the BA during the footshock, reduced the strength of fear memory as tested 1 d later, whereas silencing the VTA-central amygdala (CeA) projection had no effect. Thus, VTA dopamine neurons projecting to the BA contribute to fear memory formation, by coding for the saliency of the footshock event and by signaling such events to the basal amygdala.
Jean-Philippe Thiran, Gabriel Girard, Elda Fischi Gomez, Philipp Johannes Koch, Liana Okudzhava