Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
This work combines a machine learning potential energy function with a modular enhanced sampling scheme to obtain statistically converged thermodynamical properties of flexible medium-size organic molecules at high ab initio level. We offer a modular environment in the python package MORESIM that allows custom design of replica exchange simulations with any level of theory including ML-based potentials. Our specific combination of Hamiltonian and reservoir replica exchange is shown to be a powerful technique to accelerate enhanced sampling simulations and explore free energy landscapes with a quantum chemical accuracy unattainable otherwise (e.g., DLPNO-CCSD-(T)/CBS quality). This engine is used to demonstrate the relevance of accessing the ab initio free energy landscapes of molecules whose stability is determined by a subtle interplay between variations in the underlying potential energy and conformational entropy (i.e., a bridged asymmetrically polarized dithiacyclophane and a widely used organocatalyst) both in the gas phase and in solution (implicit solvent).
Federico Grasselli, Paolo Pegolo